

From FOPI to FAIR – Constraining the Nuclear Matter Equation of State at Supra Normal Densities

Y. Leifels GSI Helmholtzzentrum für Schwerionenforschung GmbH Darmstadt

NUSYM 2015 Krakow, June 29 – July 2, 2015

Outline

- Introduction
- FOPI Detector
- Experimental data
 - stopping
 - clusterization
 - flow
 - isospin pairs
- Conclusions
- Outlook and future perspectives

Heavy ion collisions at intermediate energies

The FOPI Experiment

FOPI collaboration

A. Andronic, R. Averbeck, Z. Basrak, N. Bastid, M.L. Benabderramahne, M. Berger, P. Bühler, R. Caplar, M. Cargnelli, M. Ciobanu, P. Crochet, I. Deppner, P. Dupieux, M. Dzelalija, L. Fabbietti, J. Frühauf, F. Fu, P. Gasik, O. Hartmann, N. Herrmann, K.D. Hildenbrand, B. Hong, T.I. Kang, J. Keskemeti, Y.J. Kim, M. Kis, M. Kirejczyk, R. Münzer, P. Koczon, M. Korolija, R. Kotte, A. Lebedev, K.S. Lee, Y. Leifels, A. LeFevre, P. Loizeau, X. Lopez, M. Marquardt, J. Marton, M. Merschmeyer, M. Petrovici, K. Piasecki, F. Rami, V. Ramillien, A. Reischl, W. Reisdorf, M.S. Ryu, A. Schüttauf, Z. Seres, B. Sikora, K.S. Sim, V. Simion, K. Siwek-Wilczynska, K. Suzuki, Z. Tyminski, J. Weinert, K. Wisniewski, Z. Xiao, H.S. Xu, J.T. Yang, I. Yushmanov, V. Zimnyuk, A. Zhilin, Y. Zhang, J. Zmeskal and J. Aichelin, E. Bratkovskaya, W. Cassing, C. Hartnack, T.Gaitanos, Q. Li

IPNE Bucharest, Romania **ITEP Moscow**. Russia **CRIP/KFKI** Budapest, Hungary Kurchatov Institute Moscow, Russia LPC Clermont-Ferrand, France Korea University, Seoul, Korea **GSI** Darmstadt, Germany **IReS Strasbourg**, France FZ Rossendorf, Germany Univ. of Heidelberg, Germany Univ. of Warsaw. Poland RBI Zagreb, Croatia IMP Lanzhou, China SMI Vienna, Austria TUM, Munich, Germany + P. Kienle (TUM), T.Yamazaki (RIKEN)

Collective flow

H.A. Gustafsson, et al., Phys. Rev. Lett. 52 (1984) 1590. R.E. Renfordt, et al., Phys. Rev. Lett. 53 (1984) 763.

Phase space distribution with
respect to reaction plane
$$\frac{dN}{d\phi} \sim 1 + 2v_1 \cos(\phi) + 2v_2 \cos(2\phi)$$
$$\phi = \phi_R - \phi$$
S. Voloshin, Y. Zhang, *hep-ph/9407082*
J.Y. Ollitrault, *nucl-ex/9711003*

Collisions of heavy ions between 0.1 – 2AGeV

At intermediate energies

- stopping
- expansion
- clusterization
- flow
- particle production
 - pions, kaons

What did we learn? All observables are

interrelated

- ✓ flow stopping
- expansion clusterization
- clusterization spectra

t, ³He, ⁴He production linked together

Stopping and flow are interrelated

Collective flows in Au+Au at 1.0 AGeV

Collective flows in Au+Au at 1.5A GeV

Elliptic flow of neutrons and charged particles From LAND + FOPI to ASY-EOS + LAND

Neutron squeeze-out: Y. Leifels et al., PRL 71, 963 (1993)

Yvonne Leifels - NUSYM 2015

Symmetry energy at high densities? – Elliptic flow of t and ³He

Same system

- difference of t and ³He elliptic flow rising with energy
- and larger for peripheral events
- momentum vs density effect
- creation of t and ³He

Parameterization of shape

 $V_{2n} = |V_{20}| + |V_{22}|$ $V_{2}(Y^{(0)}) = V_{20} + V_{22} \cdot Y^{(0)2}$

beam energy vs impact parameter

Elliptic flow Changing isospin of system

Systems with same mass but with different isospin content

$$\frac{96}{44}Ru + Ru, \frac{96}{40}Zr + Zr$$

- no significant difference between neutron rich and proton rich system
- difference between t and ³He persistent

Towards an understanding of the t/³He elliptic flow

IQMD SM + SACA - simulated annealing mechanism

Ingredients to the binding energy of the clusters:

- Volume component: mean field (Skyrme, dominant), for NN, NΛ (Hypernuclei)
- Surface effect correction: Yukawa term.
- Asymmetry energy : 23.3MeV $(<\rho'_B>)({}^{V}_{ASY}).(<\rho'_n>-<\rho'_p>)^2/<\rho'_B>)$
- Extra « structure » energy (N,Z,ρ) =
 - $B_{MF}(\rho).((B_{exp}-B_{BW})/(B_{BW}-B_{Coul}-B_{asy}))(\rho_0)$
- ³He+n recombination.
- Secondary decay: GEMINI.

Particle production Pion multiplicities

Pion directed flow in Au+Au collisions at 1.5A GeV

Conclusions

- ➢ FOPI collected vast amount of data on HICs between 0.1 and 1A GeV
- > convincing conclusions on basic nuclear properties imply a successful simulation:
 - ➤ of the full set of experimental observables
 - ➢ with the same code
 - > using the same physical and technical parameters
- reached for a number of observables using the SM option

Are there other solutions?

Choice in IQMD for

 σ_{NN}, momentum dependence of optical potentials, prescription of Pauli blocking and detailed balance etc.

describes most of the data

Comparison of FOPI "constrained" EOS to recent microscopic model calculations

** T. Katayama, K. Saito, Phys. Rev. C 88 (2013) 035805.

Conclusions

- ➢ FOPI collected vast amount of data on HICs between 0.1 and 1A GeV
- > convincing conclusions on basic nuclear properties imply a successful simulation:
 - of the full set of experimental observables
 - > with the same code
 - using the same physical and technical parameters
- reached for a number of observables using the SM option
- for some other data not yet the case
 - pion yields: differ only by about 10% between HM and SM options, imply high experimental accuracy and better transport model predictions (elementary pion cross sections not precisely known).
- a single parameter v_{2n}, characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- stiffness of the asymmetry energy can be discriminated by the shape (v_{2n}) the elliptic flow over a large range of rapidity (not only mid-rapidity) of ³He and tritons. Preliminary indication of 0.5<= γ_{asy} < 1 by confronting IQMD-SACA to FOPI data.</p>

Outlook Kaon production ratio as a probe for symmetry energy

X.Lopez, PRC (2007)

Perspective at SIS18 with HADES

- higher sensitivity at lower energies
- requires excellent kaon identification and long beam times (~3-4 weeks)
 HADES

FAIR – Facility

Nuclear EOS of dense matter – Maximum compression reached at FAIR energies

Radioactive beams at FAIR

Studies of neutron rich matter with R³B

Yvonne Leifels - NUSYM 2015

Symmetry energy at supra normal densities Prospects at SIS18 and later at FAIR

FOPI

wall

Plastic

Califa

- Symmetry energy at supranormal densities
- Radioactive beams at the highest rigidities
- Study of momentum dependence
- of isovector part
- Extend studies to higher
- densities
- n/p and t/³He ratio and flow
 - detectors for reaction plane and impact parameter determination
 - neutron + charged particle detectors

Other observables:

Pions sensitive at 250-400A MeV
Kaon ratio requires dedicated
setup (magnet + tracking + ToF)
feasibility needs still to be
proven -> HADES@SIS18

Thank you for your attention!

SN 1006 Supernova remnant NASA/ESA, APOD 12.7.2014

Yvonne Leifels - NUSYM 2015