5th International Symposium on Nuclear Symmetry Energy (NuSym15) (29th June – 2nd July, 2015 at Kraków, Poland)

Toward high-density nuclear matter from nucleus-nucleus elastic scattering

Takenori Furumoto

(National Institute of Technology, Ichinoseki College)

Collaborators Y. Sakuragi (Osaka City Univ.) Y. Yamamoto (RIKEN Nishina Center)

Contents

- 1. Purpose
- 2. Three-body force (TBF) effect
 - for the heavy-ion elastic scattering
 - Complex G-matrix folding model
- 3. Medium effect in high density region for the heavy-ion elastic scattering
 - Introduction of the investigation methods
 - Interaction dependence
 - Incident energy and target mass dependences
- 4. Summary

Purpose

Toward nuclear matter from the experimental data

Purpose

Toward nuclear matter from the experimental data

$$v_{D,EX} = v_{D,EX}^{(real)} + i v_{D,EX}^{(imag)}$$

Frozen Density Approximation
(FDA)

$$U(\mathbf{R}) = \int \rho_1(\mathbf{r}_1) \rho_2(\mathbf{r}_2) v_D(\mathbf{s}(\rho, E) d\mathbf{r}_1 d\mathbf{r}_2$$
Projectile(1)

$$+ \int \rho_1(\mathbf{r}_1, \mathbf{r}_1 - \mathbf{s}) \rho_1(\mathbf{r}_2, \mathbf{r}_2 + \mathbf{s}) v_{EX}(\mathbf{s}(\rho, E) \exp\left[i\frac{\mathbf{K} \cdot \mathbf{s}}{M}\right] d\mathbf{r}_1 d\mathbf{r}_2$$

$$= V_{DFM}(\mathbf{R}) + iW_{DFM}(\mathbf{R})$$
Frozen-density approx. (FDA)

$$\rho = \rho_1 + \rho_2$$

Recent

We have proposed the complex G-matrix folding model

- the complex G-matrix is derived from the ESC08 NN interaction
- includes the effect of the multi-body repulsive force
- consist from the repulsive and attractive parts

ESC : two-body only MPa : with three- & four-body forces MPb : with three-body forces MPc : with three-body forces

Y. Yamamoto, <u>T. Furumoto</u>, N. Yasutake, and Th. A. Rijken, Phys. Rev. C90, 045805 (2014)

$^{16}O + ^{16}O$ elastic scattering cross section

Introduction of the investigation methods

1. Where is the visible region for the cross section?

Frozen Density Approximation
(FDA)

$$U(\mathbf{R}) = \int \rho_1(\mathbf{r}_1) \rho_2(\mathbf{r}_2) v_D(\mathbf{s}(\rho, E) d\mathbf{r}_1 d\mathbf{r}_2$$
Projectile(1)

$$+ \int \rho_1(\mathbf{r}_1, \mathbf{r}_1 - \mathbf{s}) \rho_2(\mathbf{r}_2, \mathbf{r}_2 + \mathbf{s}) v_{EX}(\mathbf{s}(\rho, E) \exp\left[i\frac{\mathbf{K} \cdot \mathbf{s}}{M}\right] d\mathbf{r}_1 d\mathbf{r}_2$$

$$= V_{DFM}(\mathbf{R}) + iW_{DFM}(\mathbf{R})$$
Frozen-density approx. (FDA)

$$\rho = \rho_1 + \rho_2$$

Interaction dependence

2. If the interaction is changed, can we give the same conclusion?

$^{16}O + ^{16}O$ elastic scattering cross section at E/A = 70 MeV

$^{16}O + ^{16}O$ elastic scattering cross section at E/A = 70 MeV

Incident energy and target mass dependence

3. What system is the most suitable to investigate the medium effect in the high density region?

Potential

The medium effect is clearly seen with all interactions

Elastic cross section

It is difficult to see the medium effect

up to twice normal density

$^{12}C + ^{12}C$ elastic scattering cross sections

Summary

- Multi-pomeron (MP) potential (TBF effect)
 successful for <u>nucleus-nucleus elastic scattering</u>
- Medium effect including TBF effect in high density region
 - needs up to $\underline{k_{\rm F}} = 1.6 1.7 \text{ fm}^{-1}$ for heavy-ion elastic scattering
- Interaction dependence (MPa/b/c, CEG07b & CDM3Y6)
 - slightly different but the conclusion is not changed $(k_{\rm F} = 1.6-1.7 \text{ fm}^{-1})$
- Incident energy and target mass dependences
 - The high energy and large nucleus <u>*not*</u> seems to be suitable to investigate the medium effect by present methods.