Nusym15 June 29, July 2 2015 Krakow

Lucia QUATTROCCHI^{1,2}, Giuseppe VERDE^{3,4}

1-Università degli Studi di Messina
 2- INFN- Gruppo Collegato di Messina
 3- IPN Orsay
 4- INFN Sezione di Catania

Multi-alpha Correlations in ¹²C induced dissipative collisions at intermediate energies

PHYSICS CASES

TWO AND MULTI PARTICLE CORRELATIONS IN HEAVY ION

PHYSICS CASES

"emission temperature"

Pochodzalla et al., Phys.Rev.C.35.1695.1987

THERMAL MODEL

Relative populations used to determine temperature

$$Y_{corr}(E_{rel}) = \frac{N_{e^{-E/T}}}{\pi} \sum_{i} (2J_i + 1) \left[\frac{\Gamma_i/2}{(E - E_i)^2 + \Gamma_i^2/4} \right]$$

Correlation function depend on some of spectroscopic properties (if no collective

motion G. Verde, P. Danielewicz et al. Physics B653 (2007))

PHYSICS CASES

Spin determination

W.P. Tan et al. Phys. Rev. C69, 061304 and PhD thesis MSU

Multi particles correlations in same experiment

CORRELATIONS IN 4\pi DETECTORS

Study of 3body decays: branching ratios- direct vs sequential

 $^{12}\text{C->}3\alpha$

Resonances decay to study dynamics/ mechanism and to probes some spectrocopic properties

"CORRELATION" EXPERIMENT AT LNS WITH CHIMERA

feasibility of multi particle correlation analyses with CHIMERA

¹²C+ ²⁴Mg 35 AMeV
¹²C+ ²⁰⁸Pb 35 AMeV

MAIN GOALS

- >Nuclear dynamics
- Space-time evolution of emitting source;
- density and emission temperature ;

 Invariant Mass Spectroscopy
 Resonances decay of light nuclei;
 Clustering in nuclei and nuclear matter;
 Effects of medium and reaction process on the decay of resonance (in-medium structure) Typel Phys. Conf. Ser. 420.012078;

CHIMERA Charged Heavy Ion Mass and Energy Resolving Array

Granularity	1192 moduli Si (300μm) +CsI(Tl)
Geometry	RINGS: 688 modules 100-350cm SFERA: 504 modules 40 cm
Angular coverage	RINGS: 1°< θ < 30° SPHERE: 30°<θ<176°, 94% 4π

Angular range used:

 $0^{\circ} < \theta < 30^{\circ}$ QP decay in semi-pheripheral collisions

Particles identification:

Up to Z=8 with dE-E and PSD in CsI(TI);

TWO PARTICLE CORRELATION WITH CHIMERA

Three- and two-particle correlations: sequential vs direct

Exploring nuclear structure (sequential and direct decay resonance decay widths) in dissipative heavy-ion collisions

...but also direct reactions and inelastic scattering experiments (decay width fully sequential observed)

¹²C + ¹²C, 54 MeV M. Freer et al., PRC 49 (1994) R1751 α + ¹²C ,60 AMeV T.K. Rana et al., PRC 88 021601 (2013)

Events Selection

Criteria to select events (excitation and decay of quasi-projectile)

Confirmed by comparison with model prediction

D. Lacroix et al. , Phys. Rev. C69 054604

3α Correlation in ¹²C+ ²⁴Mg

Montecarlo Simulations

HOYLE STATE: DALITZ PLOTS

HOYLE STATE: SYMMETRIC DALITZ PLOTS

IMPORTANT COMPONENT OF DIRECT DECAY EMERGES !!!

Grenier et al.)

¹²C STATE at E*=9.64: DALITZ PLOTS

¹²C STATE at E*=9.64: SYIMMETRIC DALITZ PLOTS

CONCLUSIONS AND OUTLOOK

□Study of two- and three- particles correlations in dissipative QP decay: link to in-medium structure properties and reaction/dissipation mechanism → relavance to EoS;

□ Emission temperature and structure properties, dynamics vs statistics → Thermal model?

□Focus on ¹²C: a possible contribution of direct decay mechanism is present for all observed states (in agreement with Raduta et al. In ⁴⁰Ca+¹²C with CHIMERA and Grenier et al. In ¹²C+²⁴Mg with INDRA) PDC method under way;

Coming up: Possible evidence of Bose-Einstein condensate (DDE) to be explored soon;

Extend studies to resonances produced in other nuclei such as ⁹B, ⁶Be etc. (sequential/direct branching ratios, thermal models, etc.);

In-medium and thermal effects in structure properties of observed states;

Collaboration

L. Quattrocchi^{1,2}, L. Acosta^{3,13}, F. Amorini⁷, A. Anzalone⁷, L. Auditore^{1,2}, G. Cardella³, A. Chbihi⁵, E. De Filippo³, Francalanza^{7,9}, G. Lanzalone^{7,10}, I. Lombardo^{8,11}, I. Martel⁶, T. Minniti⁹, S. Norella^{1,2}, A. Pagano³, E.V. Pagano^{7,9}, M. Papa³, S. Pirrone³, G. Politi^{3,9}, F. Porto^{7,9}, F. Rizzo^{7,9}, E. Rosato^{8,11†}, P. Russotto³, A. Trifiro^{1,2}, M. Trimarchi^{1,2} G. Verde^{3,4}, M. Veselsky¹², M. Vigilante^{8,11}

Università di Messina, Dip. di Fisica e Scienze della Terra, Messina, Italy

 INFN, Gruppo Collegato di Messina, Messina Italy
 INFN, Sezione di Catania, Catania Italy
 INFN, Sezione di Catania, Catania Italy
 IPN Orsay, Orsay, France
 GANIL, CEA-IN2P-CNRS, Caen, France

 Departamento de Fisica Aplicada, Universitad de Huelva, Huelva, Spain

 INFN, Laboratori Nazionali del Sud , Catania Italy
 INFN, Sezione di Napoli, Napoli Italy
 Università di Catania, Dip. di Fisica e Astronomia, Catania, Italy
 Università di Napoli Federico II, Dipartimento di Fisica, Napoli, Italy
 Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D. F. 01000, Mexico

