<u>Mass formula for low-mass</u> neutron stars and its application

Hajime SOTANI (NAOJ) collaborated with K. lida, K. Oyamatsu, & A. Ohnishi

NS - EOS

- physics in NS crust
- low-mass NSs

constraints from the terrestrial nuclear experiments ?? properties around the saturation density

low-mass NS models

- low-mass NSs
 - low-central density
 - EOS for low-density region plays an important role
- \mathcal{M}
- may be able to discuss the stellar models without the EOS for high density region
- EOS of nuclear matter for $\rho \leq \rho_0$ (normal nuclear density) would be determined with reasonable accuracy by terrestrial nuclear experiments.
 - saturation parameters may be constrained via such terrestrial experiments.
- For $\rho \leq 2 \rho_0$, one may almost neglect uncertainties of three nucleon interaction (Gandolfi+ 2012) and contribution from hyperon (or quark etc...).

EOS near the saturation point

• Bulk energy per nucleon near the saturation point of symmetric nuclear matter at zero temperature;

4

unified EOS modes

- unified-EOS models
 - based on the EOSs of nuclear matter with specific values of K_0 & L
 - consistent with empirical data of masses and radii of stable nuclei
 - describing both the crustal and core regions of NS
- we especially focus on
 - phenomenological EOS with various K_0 & L (Oyamatsu & lida 2003; 2007)
 - EOSs based on relativistic mean field models
 - Shen EOS (Shen+ 1998)
 - Miyatsu EOS (Miyatsu+ 2013)
 - Skyrme-type effective interaction
 - FPS (Pethick+ 1995),
 - SLy4 (Douchin & Haensel 2001)
 - BSk19, BSk20, BSk21 (Potekhin+ 2013)

EOSs based on the different theoretical models

MR relations

- NS models are constructed with various sets of K_{0} & L ullet
- We can find the specific combination of K_0 & L describing ulletthe low-mass NSs,

$$\frac{M}{M_{\odot}} = 0.371 - 0.820u_c + 0.279u_c^2 - (0.593 - 1.254u_c + 0.235u_c^2) \left(\frac{\eta}{100 \,\mathrm{MeV}}\right)$$

$$z = 0.00859 - 0.0619u_c + 0.0255u_c^2 - (0.0429 - 0.108u_c + 0.0120u_c^2) \left(\frac{\eta}{100 \,\mathrm{MeV}}\right)$$

 $z = 1/\sqrt{1 - 2GM/Rc^2} - 1$

• via the simultaneous observations of M & z (or R or R_{∞}), one could extract the values of $\eta \& \rho_c !!$

radii of low-mass NSs

• with using the formulas of mass and gravitational redshift, one can also predict the radius of NS.

application of η

- Unlike *M*, *R* is generally much more difficult to determine
- Thermal emission from NS surface must be one of the good chances to obtain the information associated with *R*.
 - thermonuclear X-ray bursts at NS surfaces
 - photospheric radius expansion
 - quiescent low-mass X-ray binaries
- we adopt the constraints on (M,R) obtained by Suleimanov et al. (2011), because their results are minimized the theoretical uncertainties.
 - they adopt three different atmosphere model, i.e., H, He, & $Z = 0.3Z_{\odot}$
 - they adopt the whole cooling track

allowed region in MR relation

• $R \ge 13$ km for NS in 4U 1608–52, if masses are in the range of 1.2–2.4 M_{\odot} (Poutanen et al. arXiv:1405.2663)

Jun./30/2015

NuSYM15@Krakow

summary

- *M* & *R* of (low-mass) NSs are becoming to determine observationally.
 - low-mass NSs are strongly associated with the EOS for low-density region
- we focus on the NS models with $\rho \leq 2 \rho_0$, adopting the unified EOS models.
- we are successful to derive the formulas of mass and gravitational redshift for low-mass NS, as functions of NS central density and a new nuclear matter parameter.
 - also predict the stellar radius
 - probably, independent of the EOS models
 - this is direct connection between the nuclear physics & astrophysics.
- we show a prospect to constrain the saturation parameters via the direct observations of NSs.