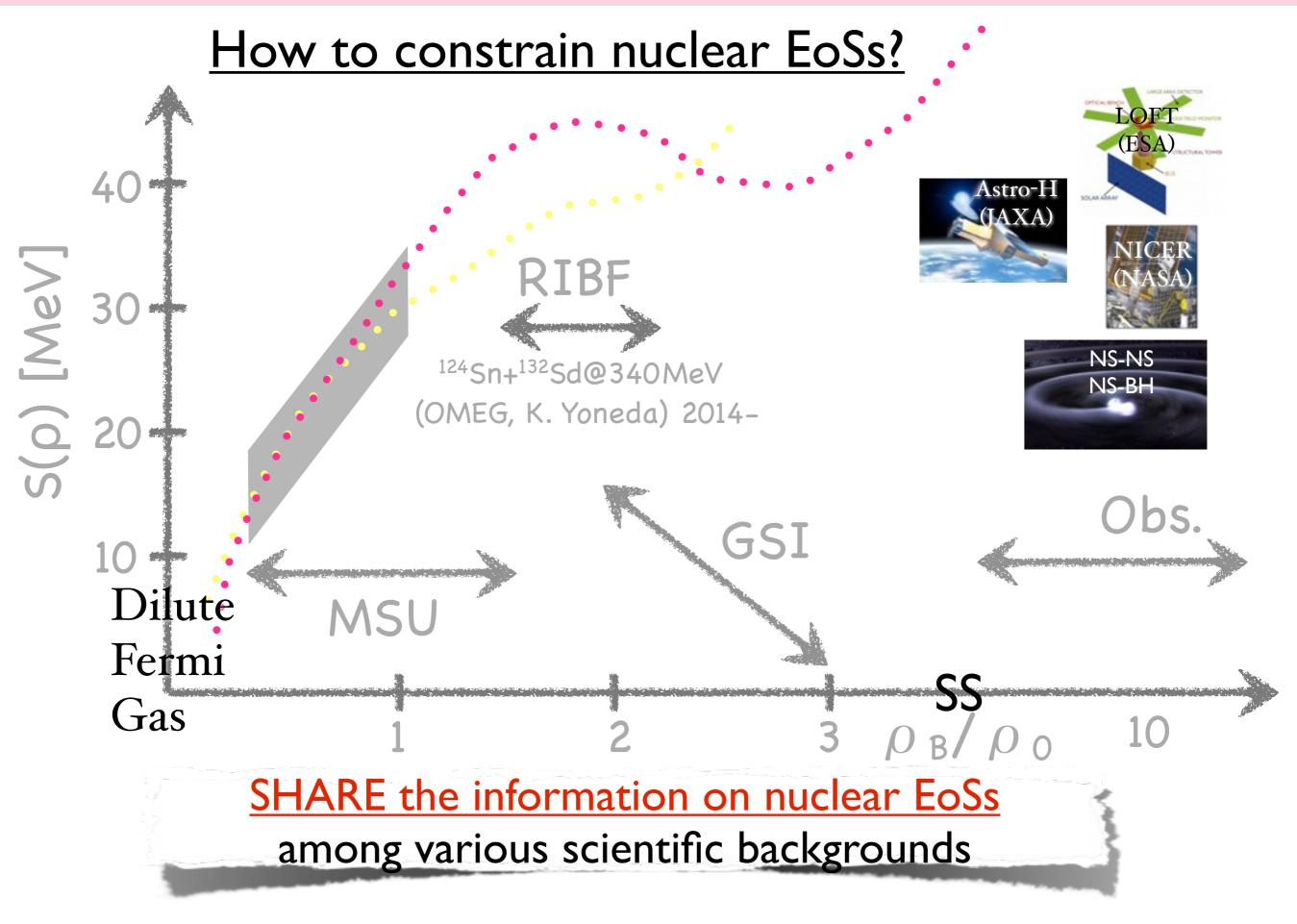


Publ. Astron. Soc. Japan (2015) 67 (1), 13 (1–17) doi: 10.1093/pasj/psu141 Advance Access Publication Date: 2015 January 20


EOSDB: The database for nuclear equations of state*

Core Members: <u>C. Ishizuka (RLNR, Tokyo Tech)</u> T. Suda (Tokyo Univ.)

EOSDB Consortium

H. Suzuki (Tokyo Univ. of Sci.) A. Ohnishi (YITP, Kyoto Univ.) K. Sumiyoshi (Numazu CT) H. Toki (Osaka Univ.)

C. ISHIZUKA NUSYM 2015, KRAKOW, POLAND

Online-database for nuclear EoSs EOSDB

EOSDB (C. Ishizuka, T. Suda, et al.) http://aspht1.ph.noda.tus.ac.jp/eos/

collaborating with CompOSE (S.Typel, M. Dutra, T. Klaen et al.) http://compose.obspm.fr/

Construction of data table

Bibliography Data attribution (Theo./Expr. analysis/Obs.) Constituents (N/Y/α/A/Q/L) Method (Model/Approx.) Physics constants Primary key •EoS for Sym. nucl. matter (E/P/S) ρ •EoS for Pure neutron matter(E/P/S) Symmetry energy (Esym/L/K)

36 EoS at T=0 MeV

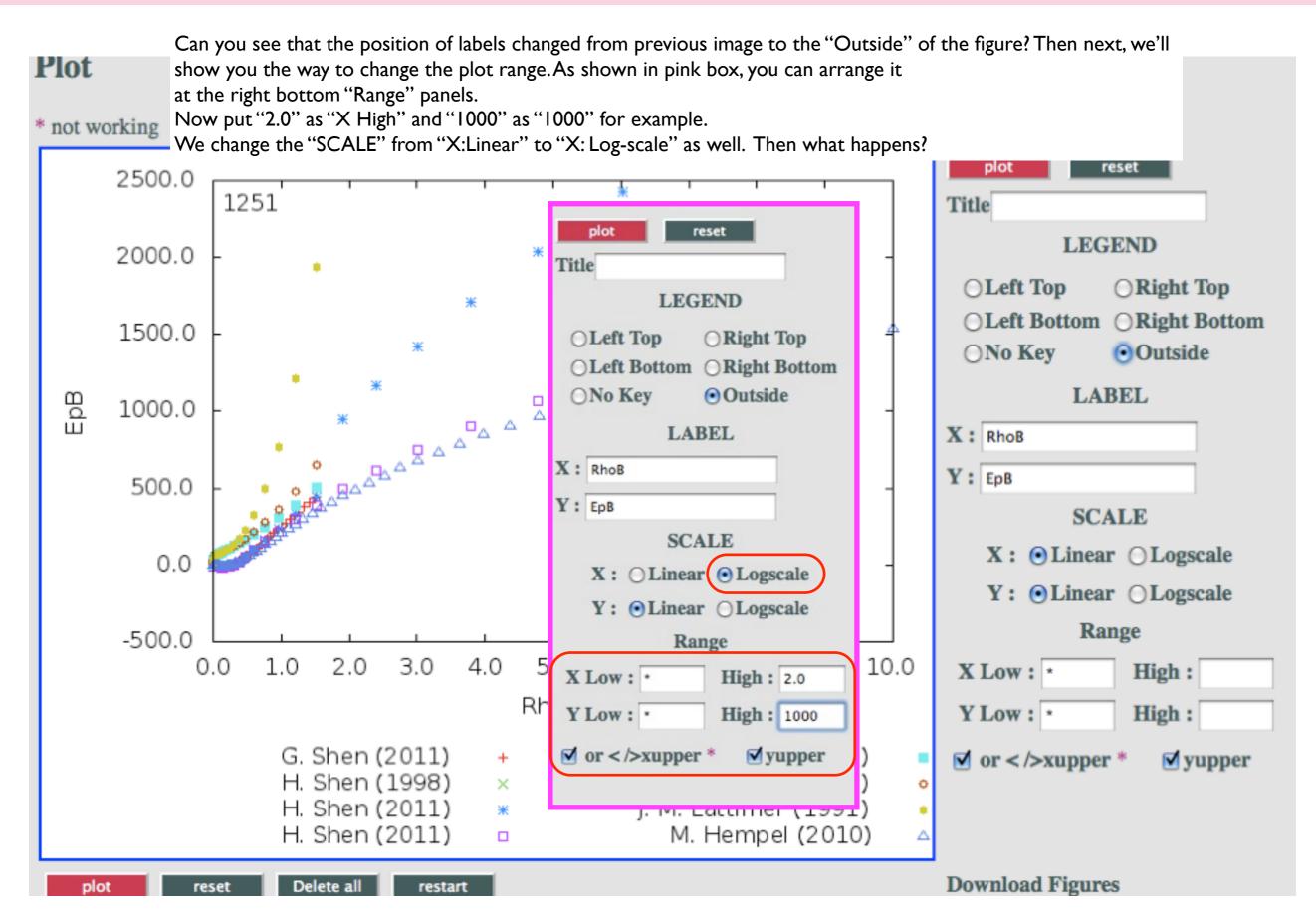
Data Retrieval System for EOSDB Database

Last update of database:

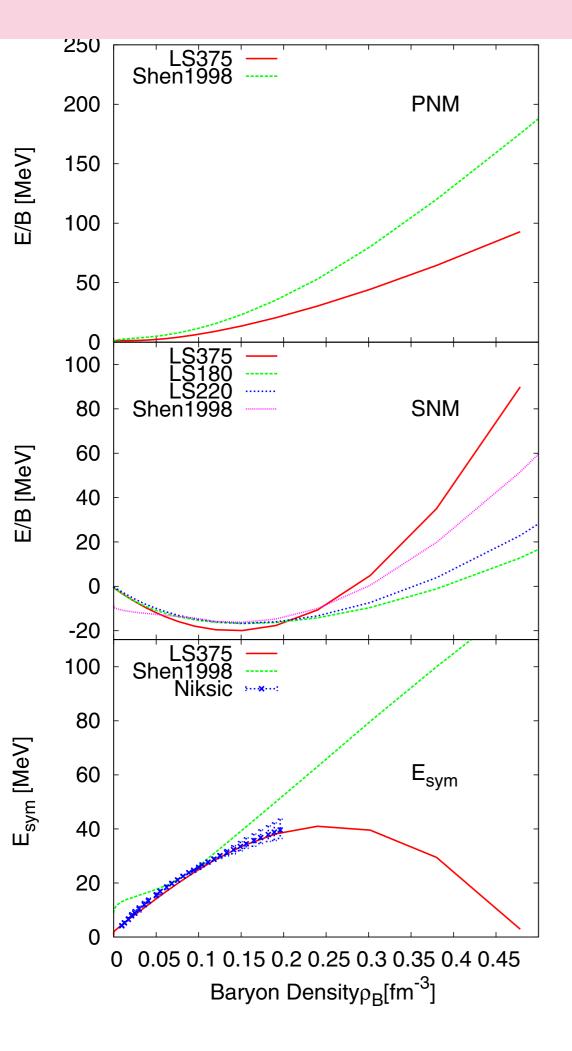
* not working

** Other options do not work.

				Query		
	search example	reset				
				Graph Optic	ons	
Category	Category ‡					
Xaxis	Category Symmetry Energy	any	From :	To :	Include + data with upper limit	
Yaxis	Thermodynamic Variables	any	÷ From :	To :	Include + data with upper limit	
Criterion +	any ‡	any	÷ From :	To :	Include + data with upper limit	
				Optional Crite	erion	
			Bil	oliographical C	Criterion	
Author		First a	uthor 💠 ex) "La	astname"		
Author	●strict ○forward agreement ○backward agreement ○fuzzy					
Reference	ALL		\$			
Publication Year	From To					
				Retrieval Opt	tions	
Display / Page	10 ‡					
Order by**	First Author \$					
	search example	reset				


Search Result

	plot	restart reset plot_all				
		Re	sults : 25			1
#	0	Reference	Min. RhoB	Max. RhoB	Min. EpB	Max. EpB
1		AkmalPRC1998_AV18	0.02	0.96	-18.13	56.51
2		AkmalPRC1998_AV18_3BF	0.02	0.96	-11.85	313.46
3		AkmalPRC1998_AV18_Boost	0.02	0.96	-13.69	82.63
4		AkmalPRC1998_AV18_3BF_Boost	0.02	0.96	-12.21	204.02
5		BotvinaNPA2010	1.5E-09	0.0474	-12.2	-8.338
6		IshizukaJPG2008_SR30	0	1.512692	-8.537953	598.6558
7		vanDalenNPA2004	0	0.4929	-16.17	31.55
8		TimmesAPJS1999	0	0	0	0
9		GShenPRC2011_FSUgold2.1	1.000003E-08	1.49624	-16.22081	435.6136
10		KanzawaPTP2009	0	0	-16.15	28.41
11		HShenNPA 1998	7.581421E-11	1.512692	-16.2359	442.3408


Plot

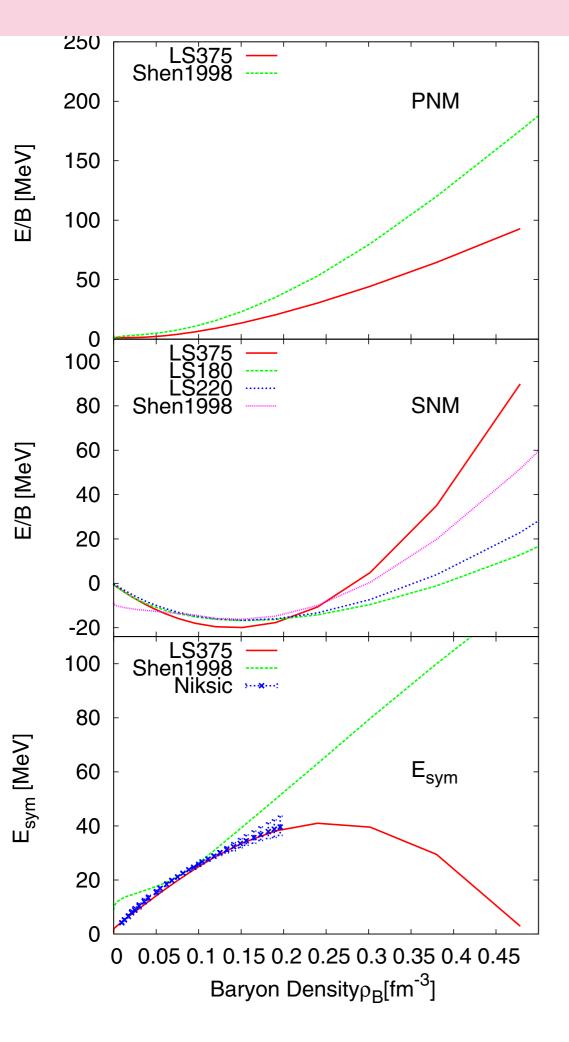
* not working plot reset 450.0 A. Akmal (1998) + 325 Title E.N.E. Dalen (2004) × 400.0 * LEGEND G. Shen (2011) ж ж 350.0 Left Top **Right** Top ○Left Bottom ○Right Bottom 300.0 **No Key** Outside LABEL 250.0 X: RhoB EpB 200.0 Y: EpB 150.0 SCALE X: OLinear OLogscale 100.0 Y: OLinear OLogscale 50.0 Range High : * 0.0 X Low: * Y Low: * High: * -50.0 0.2 0.0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 ✓ or </>xupper * **yupper** RhoB **Download Figures** Delete all reset restart plot Legend Type* Del* Color Figures Data Size 1: png ps eps pdf A. Akmal (1998) \$ \$ 1 1 Download Data 2: E.N.E. Dalen (2004) \$ + 1 2 download 3: G. Shen (2011) + \$ 1 3

C. ISHIZUKA NUSYM 2015, KRAKOW, POLAND

Application & Discussion

Standard EoS for Astro. Use

Lattimer&Swesty (LS)


 E_{sym} for LS 180/220/375@ ρ_0 = 29.3MeV LS 375 (K=375MeV) Best consistency with Niksic2002

Basic interaction: SKI (Vautherin+1970) 16O, 40,48Ca, 90Zr and 208Pb Modification: Adding Three-body int. to SKI

> Adjusting K withTBI It changes EoS itself Property of Finite Nuclei?

SHF

Various finite nuclei at low E E/B < 50MeV to reproduce both Pb and Sn (J.R. Stone+2003)

Standard EoS for Astro. Use <u>H.Shen EoS (TMI)</u>

 E_{sym} for TM1@ ρ_0 = 36.9MeV, stiffer than Niksic2002 K=281MeV

Basic interaction: TMI (Sugahara&Toki) Fitting with major nuclei and unstable nuclei (p-rich/n-rich)

Spurious shell closures at Z=58 and 92 in Major RMF models Fock term(TBI or Tensor)? Rotation of deformed nuclei? L.S. Geng+ Chin. Phys. Lett 23 (2006) 1139

RMF

Good explanation of p-induced reaction even at high E For light nuclei, it is difficult to produce B.E. r_{ch}, etc.

The other parameter sets of SHF and RMF models

<u>M. Dutra + 2012, P. D. Stevenson + 2012</u>

Only 16/240 Skyrme HF models satisfy nuclear experimental constraints.

These **16** can NOT commonly reproduce finite nuclei,

(1) B.E. of Even-Even Doubly -(Semi)-Magic Nuclei

(16O, 34Si, 4°Ca, 48Ca, 48Ni, 56Ni, 68Ni, 78Ni, 8°Zr, 9°Zr, 10°Sn, 114Sn, 146Gd, and 208Pb)

(2) Fission Barriers in heavy nuclei

(3) Isotope shift

<u>M. Dutra +2013</u>

Only 9/147 **RMF** models (linear, non-linear $\sigma_{3+}\sigma_{4}$, $\sigma_{3+}\sigma_{4+}\omega_{4}$, σ and ω -mixing, density-dependent, point coupling) satisfy nuclear experimental constraints. BSR, DD-F, FSUGold, TW99

<u>Geng + 2006</u>

RMF models (TMA, NL3, PKDD, DD-ME2) have spurious shell closures at Z=58 and 92.

The above 9 models may have the same property.

J.R. Stone & M. Dutra plan to provide these 240+147=387 EoSs for CompOSE/EOSDB after NuSYM'15.

 Table 5. Table for classification of phenomenological theoretical models.

Phenomenologica	1				
Rel. / Non-rel.	Method	Interaction	Reference	Data ID	Comment
Rel.	RMF	TM1(Only N)	HShenNPA1998	E0002	Thomas-Fermi apprx.
					for inhomo. phase.
					$(M_{\rm NS}^{\rm Max}, R) = (2.18 M_{\odot}, 12.5 \ [\rm km]).$
Rel.	RMF	TM1(Only N)	$\mathrm{HShenAPJS2011}_{\ \mathrm{N}}$	E0003	Different from E0002 at $(T, Y_p) = (0, 0)$.
					$(M_{\rm NS}^{\rm Max}, R) = (2.18 M_{\odot}, 12.5 \ [\rm km]).$
Rel.	RMF	TM1(Only N)	FurusawaApJ2011	E0011	NSE for inhomo. phase
Rel.	RMF	TM1(Only N)	BotvinaNPA2010	E0010	NSE for inhomo. phase
Rel.	RMF	TM1(with Y)	HShenAPJS2011_Y	E0004	Only Λ included as hyperons.
					$M_{\rm NS}^{\rm Max} = 1.75 M_{\odot}.$
Rel.	RMF	TM1(with Y)	IshizukaJPG2008_SR30	E0012	Full Baryon Octet.
					$(M_{NS}^{Max}, R) = 1.63 M_{\odot}, 13.26 \text{ [km]}).$
Rel.	RMF	TMA	$HempelNPA2010_TMA$	E0008	NSE for infomo. phase
					$(M_{\rm NS}^{\rm Max}, R) = (2.04 M_{\odot}, 12.43 \ [{\rm km}])$
Rel.	RMF(RHF+QMC)		MiyatsuPLB2012	E0009	Full Baryon Octet. $M_{NS}^{Max} = 1.95 M_{\odot}$.
Rel.	DD RMF	DD-TW	TypelNPA1999	E0023	$(M_{NS}^{Max}, R) = (2.2 M_{\odot}, 11.2 \text{ [km]}).$
Rel.	DD RMF	DD-ME1	NiksicPRC2002	E0024	$(M_{\rm NS}^{\rm Max} = 2.47 M_{\odot}, 11.9 \ [\rm km]).$
Rel.	DD RMF	FSUgold	$GShen PRC 2011_FSUgold 2.1$	E0001	Adjusted to support $2.1 M_{\odot}$ NS.
		+ Polytrope			$(M_{\rm NS}^{\rm Max}, R) = (2.1 M_{\odot}, 12.2 \ [\rm km])$

 Table 5. Table for classification of phenomenological theoretical models.

Phenomeno	ological				
Rel. / Non-	-rel. Method	Interaction	Reference	Data ID	Comment
B cl	DMD	TM1/(Q_L_N).	- IICI NIDA 1000	E 0002	Thomas-Fermi apprx.
(for inhomo. phase.
					$M_{\rm NS}^{\rm Max}, R) = (2.18 M_{\odot}, 12.5 \ [{\rm km}]).$
1)	$M_{NS}^{MAX}, R) =$	(218M)	10 125 km	03	Different from E0002 at $(T, Y_p) = (0, 0)$.
· ·		(2.10)	10, 12.3Km)		$(M_{NS}^{Max}, R) = (2.18 M_{\odot}, 12.5 [km]).$
				11	NSE for inhomo. phase
				010	NSE for inhomo. phase
Rel.	RMF	TM1(with Y)	HShenAPJS2011_Y	E0004	Only Λ included as hyperons.
					$M_{\rm NS}^{\rm Max} = 1.75 M_{\odot}.$
Rel.	RMF	TM1(with Y)	IshizukaJPG2008_SR30	E0012	Full Baryon Octet.
					$(M_{NS}^{Max}, R) = 1.63 M_{\odot}, 13.26 \text{ [km]}).$
Rel.	RMF	TMA	$HempelNPA2010_TMA$	E0008	NSE for infomo. phase
					$(M_{\rm NS}^{\rm Max}, R) = (2.04 M_{\odot}, 12.43 \ [\rm km])$
Rel.	RMF(RHF+QMC)		MiyatsuPLB2012	E0009	Full Baryon Octet. $M_{NS}^{Max} = 1.95 M_{\odot}$.
Rel.	DD RMF	DD-TW	TypelNPA1999	E0023	$(M_{\rm NS}^{\rm Max}, R) = (2.2 M_{\odot}, 11.2 \ [\rm km]).$
Rel.	DD RMF	DD-ME1	NiksicPRC2002	E0024	$(M_{\rm NS}^{\rm Max} = 2.47 M_{\odot}, 11.9 \ [\rm km]).$
Rel.	DD RMF	FSUgold	GShenPRC2011_FSUgold2.1	E0001	Adjusted to support $2.1 M_{\odot}$ NS.
		+ Polytrope			$(M_{\rm NS}^{\rm Max}, R) = (2.1 M_{\odot}, 12.2 \ [\rm km])$

 Table 5. Table for classification of phenomenological theoretical models.

Phenomenologic	al				
Rel. / Non-rel.	Method	Interaction	Reference	Data ID	Comment
B.1.	DME		HCl. NDA1000	F 0002	Thomas-Fermi apprx.
					for inhomo. phase.
					$(M_{\rm NS}^{\rm Max}, R) = (2.18 M_{\odot}, 12.5 \ [{\rm km}]).$
(M⊾	$(R^{MAX} R) =$	(2 18M	10, I 2.5km)	03	Different from E0002 at $(T, Y_p) = (0, 0)$.
ייי)		(2.10)	10, 12.0 (11)		$(M_{\rm NS}^{\rm Max}, R) = (2.18 M_{\odot}, 12.5 \ [\rm km]).$
				11	NSE for inhomo. phase
				010	NSE for inhomo. phase
Rel.	RMF	TM1(with Y)	$HShenAPJS2011_Y$	E0004	Only Λ included as hyperons.
					$M_{\rm NS}^{\rm Max} = 1.75 M_{\odot}.$
Rel.	RMF	TM1(with Y)	IshizukaJPG2008_SR30	E0012	Full Baryon Octet.
					$(M_{\rm NS}^{\rm Max},R)=1.63M_\odot,13.26\;[\rm km]).$
Rel.	RMF	TMA	${\rm HempelNPA2010_TMA}$	E0008	NSE for infomo. phase
					$(M_{\rm NS}^{\rm Max},R)=(2.04M_\odot,12.43~[\rm km])$
Rel.	RMF(RHF+QMC)		MiyatsuPLB2012	E0009	Full Baryon Octet. $M_{NS}^{Max} = 1.95 M_{\odot}$.
Rel.	DD RMF	DD-TW	TypelNPA1999	E0023	$(M_{\rm NS}^{\rm Max}, R) = (2.2 M_{\odot}, 11.2 \ [\rm km]).$
Rel.	DD RMF	DD-ME1	NiksicPRC2002	E0024	$(M_{\rm NS}^{\rm Max} = 2.47 M_{\odot}, 11.9 \ [\rm km]).$
Rel.	DD RMF	FSUgold	$GShen PRC 2011_FSUgold 2.1$	E0001	Adjusted to support $2.1 M_{\odot}$ NS.
		+ Polytrope			$(M_{\rm NS}^{\rm Max}, R) = (2.1 M_{\odot}, 12.2 \ [\rm km])$

 Table 5. Table for classification of phenomenological theoretical models.

Phenomenol Rel. / Non-r		Interaction	Reference Data	ID Comment
R-1		TTM1.(A-1.,N).	UGL NDA 1000	2 Thomas-Fermi apprx.
				for inhomo. phase.
				$(M_{\rm NS}^{\rm Max}, R) = (2.18 M_{\odot}, 12.5 [\rm km]).$
(N	1_{NS} (MAX, R)=	(2.18⊵	10, 12.5km)	B Different from E0002 at $(T, Y_p) = (0)$
V -	,,,,,	(,/	$(M_{NS}^{Max}, R) = (2.18 M_{\odot}, 12.5 [km]).$
			11	1
			01() NSE for inhomo. phase
Rel.	RMF	TM1(with Y)	HShenAPJS2011_Y E0004	J J I
				MMax - 1.75M
Rel.	RMF	TM1(with Y)		
			R=12.5km	1 ± 0.5 km
Rel.	RMF	TMA		
Rel.			@1.4N	1solar ^{m])}
tel. Rel.	RMF(RHF+QMC) DD RMF	DD-TW		., PoS (NIC XIII) 2015
	-	DD-1 W DD-ME1		
Rel.	DD RMF		in print	
Rel.	DD RMF	FSUgold		

26

Summary

Online Database for nuclear EoSs, EOSDB

http://aspht1.ph.noda.tus.ac.jp/eos/

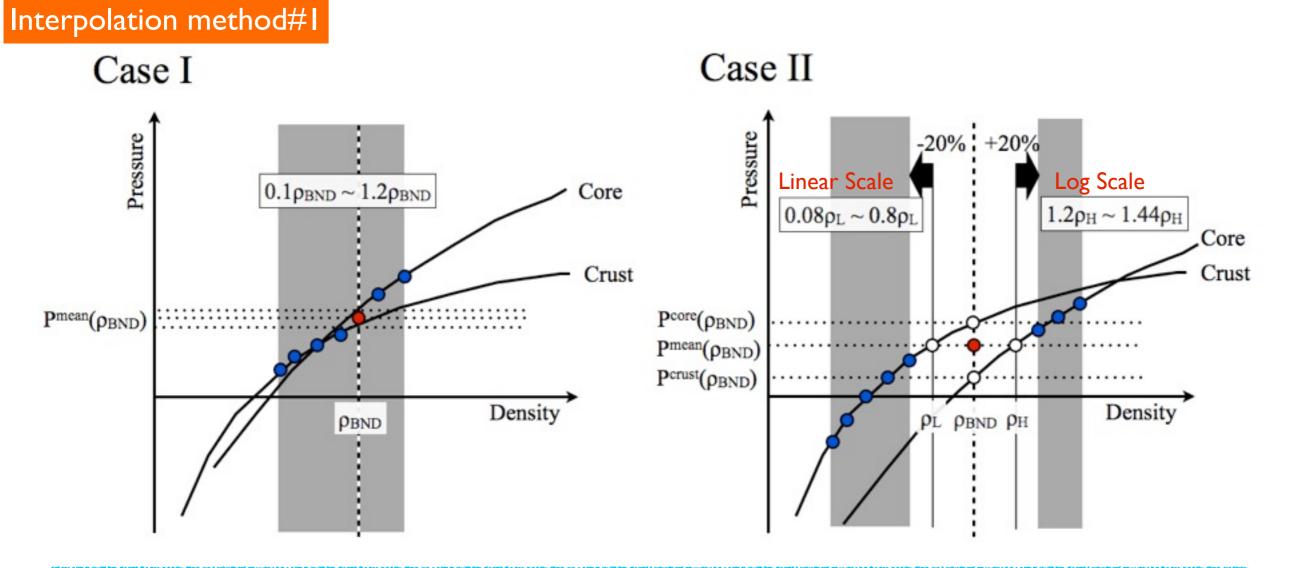
<u>Basic Structure:</u> EOSDB following SAGA database (Suda + 2008, 2011) :MySQL/CSV Search&Plot system: Perl/CGI/Java

<u>Aim:</u> Sharing Basic EoS Properties with all scientists Development of a "Feel & Think" system for various models and interactions used to derive nuclear EoSs

<u>Strong Point:</u> Useful to assess the validity of each EoS Including used assumptions and approximations in each EoS

<u>Application suggestion:</u> Checking the correlation among E_{sym} , L, K and so on. \therefore)E/P/S/Es_{ym}/L are compiled as a function of Q_B Checking the NS properties

Appendix

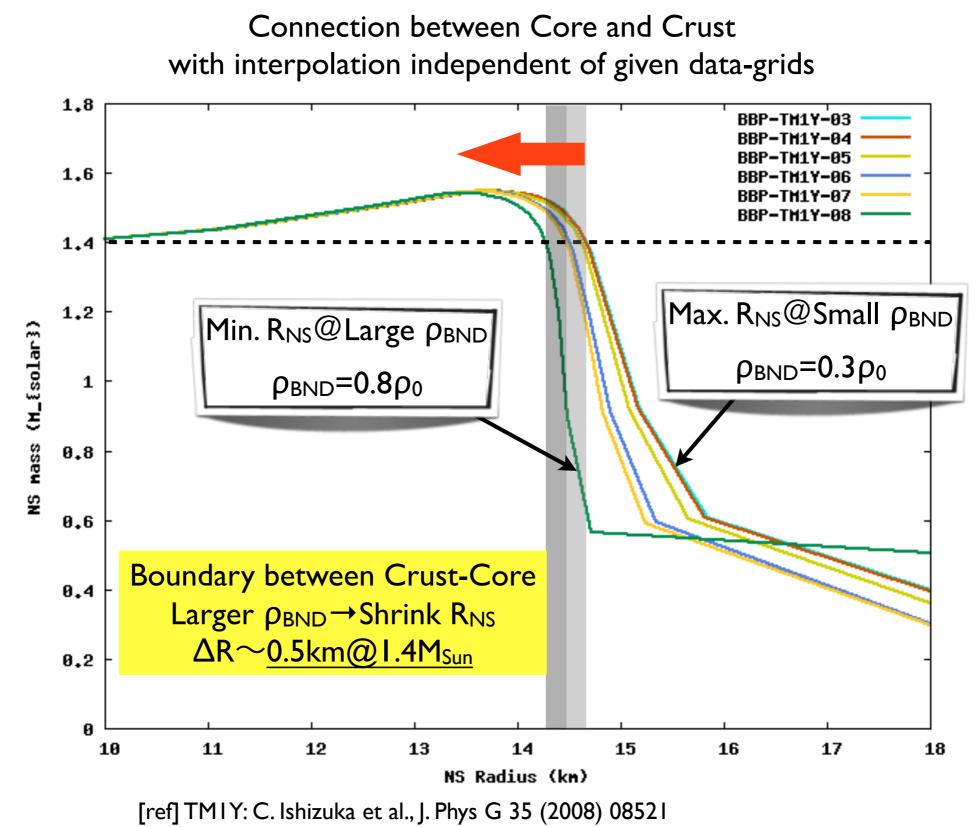

Open EoSs for NS core and crust

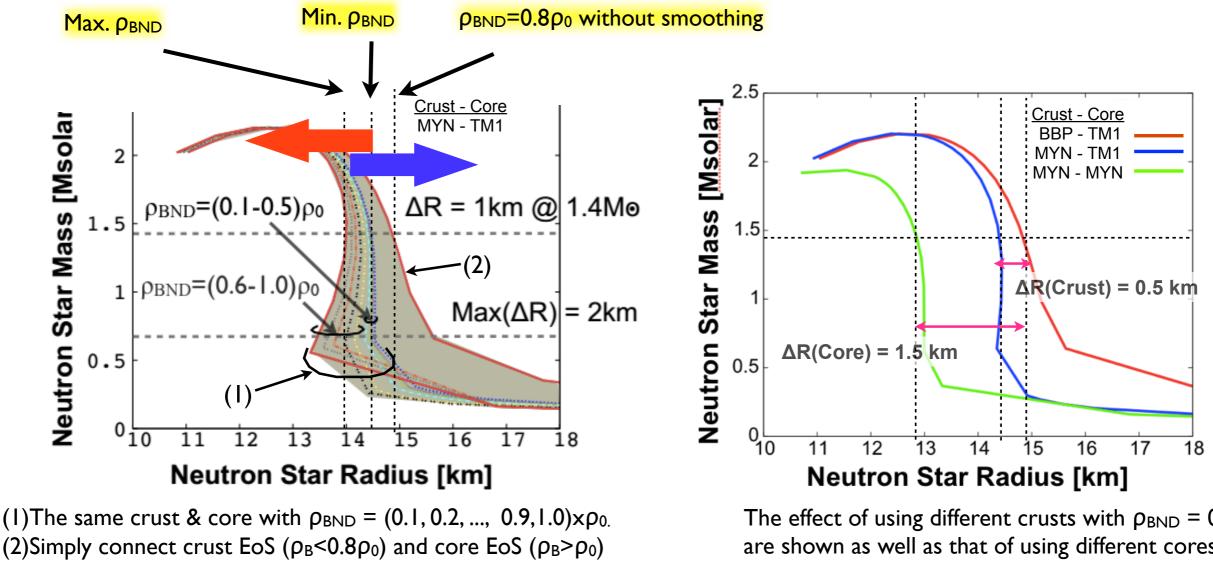
Crust EoS	Core EoS
MYN[2] ρ _B <ρ ₀	RHF(MYN)[2]
BBP[5] ρ _B <0.8ρ ₀	RMF(TMI)[3]
NGB[6] ρ _B <0.5ρ ₀	Ab initio (FPS)[4]
HZ[7] ρ _B <0.Ιρ ₀	Skyrme HF (SLy) [4]

[1] C. Ishizuka et al. PoS2 015 in press
[2] T. Miyatsu et al., ApJ 777, 4 (2013)
[3] Y. Sugahara & H. Toki, NPA 579, 557 (1994)
[4] SLy and FPS are from the formula given in P. Haensel & A. Y. Potekin, A&A 428, 191(2004)
[5] G. Baym et al., NPA 175, 225 (1971)
[6] W. G. Newton et al., ApJS 204, 9 (2013)
[7] P. Haensel & J. L. Zdunik, A&A 480,459 (2008)
[8] H. Sotani et al., MNRAS 434, 2060 (2013)
Data from EOSDB http://aspht1.ph.noda.tus.ac.jp/eos/index.html C. Ishizuka et al., PASJ 67 (2015) 13

 M_{NS} and R_{NS} can be obtained from the TOV equation

$$\frac{dP(r)}{dr} = -\frac{G}{r^2} \left(\rho(r) + \frac{P(r)}{c^2} \right) \left(M(r) + 4\pi r^3 \frac{P(r)}{c^2} \right) \left(1 - \frac{2GM(r)}{cr^2} \right)^{-1}$$


Connection method between NS core and crust


Interpolation method#2

Connecting data smoothly using 10 data points before/behind the boundary i.e.) Interpolation depending the data-grids

without interpolation

Result #1

depending the data-grids

[Ref] C. Ishizuka et al., PoS 2015 in press

The effect of using different crusts with $\rho_{BND} = 0.5\rho_0$ are shown as well as that of using different cores.

 \blacksquare R_{NS} ambiguity due to the connection method $\Delta R \sim 1.0 \text{ km}@1.4 \text{M}_{\text{Sun}}$

 ΔRNS between different crust model >> ΔRNS between different core model but not always!

Sumary [Ref] C.Ishizuka et al., PoS (NIC XIII) 2015 in print

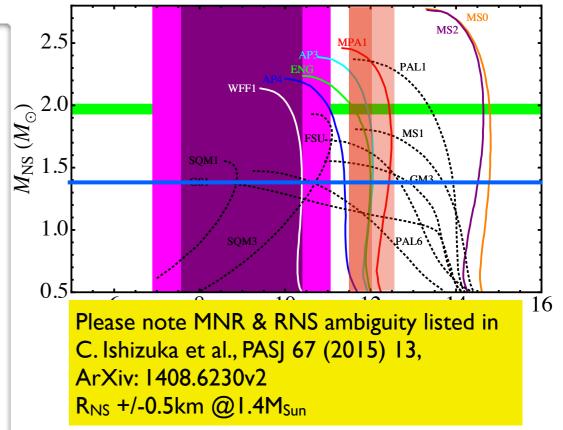
 \star Systematical Investigation of Ambiguity of R_{NS} due to ρ_{BND} treatment

- $0.1\rho_0 \leq \rho_{BND} < (upper limit defined by Crust-EoS data), by <math>0.1\rho_0$
- Δ Smooth connection below the upper-limit ρ_{B} of the given crust (Case-I)

 ΔR^{-} - 0.5km@1.4M_{Sun}

 Δ Smooth connection above the upper-limit $\rho_{\rm B}$ of the given crust (Case-II)

 $\Delta R > +0.5 \text{km}@1.4M_{\text{Sun}}$ depending the upper limit of the crust EoS


 \therefore Connection at $\rho_{BND}=0.8\rho_0$ (Spinodal region) without smoothing (Case-III)

Diff. between Case-I and III $\Delta R \sim 1.0 \text{km}@1.4 \text{M}_{\text{Sun}}$

 M_{NS}, R_{NS} are determined by high ρ_B EoS Non-negligible the ambiguity caused by the treatment of the crust-core boundary ρ_{BND}
 Small ΔR@Large mass NS

 $\Delta R \sim 1.0 \text{km}@1.4 \text{M}_{\text{Sun}}$

If ρ_{BND} is given by observation,
 We can make ΔR much smaller.
 Possible determination of the boundary using crust oscillation!?

