

The National Superconducting Cyclotron Laboratory Michigan State University

U.S. flagship user facility for rare isotope research and education in nuclear science, astro-nuclear physics, accelerator physics, and societal applications

Betty Tsang Nusym15, Krakow June 29-July 2

Nuclear Symmetry Energy: From Nucleus to Neutron Stars

Symmetry Energy

Image by Andy Sproles, ORNL Proton

Inclusion of surface terms in symmetry

From NSCL to Facility for Rare Isotope Beams (FRIB)

- Funded by DOE–SC Office of Nuclear Physics with contributions and cost share from Michigan State University and State of Michigan
 Managing to early
 - Managing to early completion in Dec 2020
 - Key feature is 400 kW beam power for all ions (5x10^{13 238}U/s)
 - Separation of isotopes in-flight
 - Fast development time for any isotope
 - Suited for all elements and short half-lives
 - · Fast, stopped, and reaccelerated beams

Michigan State University

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science

FRIB Construction Progress

above ground! April 1, 2015

Utility work on tunnel, April, 2015

FRIB Construction Progress

Nuclear Symmetry Energy: From Nucleus to Neutron Stars 曾敏兒 -- Betty Tsang

Outline

- 1. Introduction : Different forms of EoS
- 2. How did we get here? Current constraints on density dependence of symmetry energy.
- Where are we going? Future challenges and opportunities.
 Summary

Equation of State: A mathematical relationship between thermodynamic variables and properties of matter

EOS of nuclear matter:

- 1. Thermal Dynamical properties
- 2. Mass-Radius relation of n-star
- 3. Density dependence of symmetry energy
- 4. S_0 vs. L at ρ_0

E*/A

Temperatures and Densities ^{1.}

J. Natowitz K. Hagel

Equation of State of Neutron Matter

Neutron Star: balance of Gravity (pulls in) and Symmetry energy pressure (pushes out): Masses vs. Radii

$$\frac{dM}{dr} = 4\pi r^2 \mathcal{E}(r)$$
$$\frac{dP}{dr} = -G \frac{\mathcal{E}(r)M(r)}{r^2} \left[1 + \frac{P(r)}{\mathcal{E}(r)} \right]$$
$$\left[1 + \frac{4\pi r^3 P(r)}{M(r)} \right] \left[1 - \frac{2GM(r)}{r} \right]^{-1}$$

EoS of pure neutron matter: Symmetry Energy as function of pressure (density)

New observations of Neutron Stars (radius/Radii)

Productions of high intensity high energy Radioactive Isotope Beams for the EoS studies over a wide range of density 3

Femto-nova explosion created by Heavy Ion collisions

Chemical potentials in formation of light nuclei $\mu(^{A}Z) = Z\mu_{P} + N\mu_{n}$ Symmetry energy in asymmetric objects $E/A(\rho,\delta) = E/A(\rho,0) + \delta^2 \cdot S(\rho)$

Multifragmentation

Chemical Potentials: E_{Coul} , E_{sym} , ρ_p , ρ_n

Isospin Diffusion observable to study E_{sym} with Heavy Ion Collisions

Bao-An Li et al., Phys. Rep. 464, 113 (2008) Tsang, Zhang et al., PRL122, 122701(2009)

Isospin Diffusion observable to study E_{sym} with Heavy Ion Collisions

Isospin Diffusion observable to study E_{sym} with Heavy Ion Collisions

S(ρ)=12.5(ρ/ρ₀)^{2/3}+C (ρ/ρ₀)^{γ_i}

NSCL Experiment 07038: Precision Measurement of Isospin Diffusion

& S800 Spectrograph

- Investigates the density-dependence of the nuclear symmetry energy using isospin diffusion from residues new observable
- ${}^{112}Sn + {}^{112}Sn; {}^{112}Sn + {}^{124}Sn; {}^{118}Sn + {}^{118}Sn; {}^{124}Sn + {}^{112}Sn; {}^{124}Sn + {}^{124}Sn Collisions$
- Combines the MSU Miniball, the LASSA Array,

Jack Winkelbauer, PhD thesis

112 Sn+ 112 Sn; 112 Sn+ 124 Sn; 118 Sn+ 118 Sn; 124 Sn+ 112 Sn; 124 Sn+ 124 Sn

Jack Winkelbauer, PhD thesis

Correlations between force parameters

$$C_{AB} = \frac{cov(A, B)}{\sigma(A)\sigma(B)}$$

$$cov(A, B) = \frac{1}{N-1} \sum_{i} (A_i - \langle A \rangle) (B_i - \langle B \rangle)$$

$$\sigma(X) = \sqrt{\frac{1}{N-1} \sum_{i} (X_i - \langle X \rangle)^2}, X = A, B$$

$$\langle X \rangle = \frac{1}{N} \sum_{i} X_i, i = 1, N.$$

-	<u>120 Skyrm</u>	e sets		Skyrme Parameters			
	C _{AB}	K ₀	S ₀	L	ms*	mv*	
Skyrme Parameters	K ₀	1	0.003	0.161	0.131	0.295	
	S ₀	0.003	1	0.764	0.397	0.228	
	L	0.161	0.764	1	0.460	0.212	
	ms*	0.131	0.397	0.460	1	0.715	
	mv*	0.295	0.228	0.212	0.715	1	

Y.X.Zhang

Correlations between force parameters

$$C_{AB} = \frac{cov(A, B)}{\sigma(A)\sigma(B)}$$

$$cov(A, B) = \frac{1}{N-1} \sum_{i} (A_i - \langle A \rangle) (B_i - \langle B \rangle)$$

$$\sigma(X) = \sqrt{\frac{1}{N-1} \sum_{i} (X_i - \langle X \rangle)^2}, X = A, B$$

$$\langle X \rangle = \frac{1}{N} \sum_{i} X_i, i = 1, N.$$

-	120 Skyrme	sets		Experimental Observables			
	C _{AB}	R(n/p)	DR(n/p)	R(n/n)	R(p/p)	Rdiff	
Skyrme Parameters	K ₀	-0.16	-0.24	0.15	0.23	0.12	
	S ₀	0.20	0.10	0.13	-0.07	-0.17	
	L	-0.50	-0.55	-0.42	0.55	0.75	
	ms*	-0.28	-0.09	0.57	0.31	-0.70	
	f _I (mass split)	0.89	0.88	0.64	-0.78	-0.31	

Y.X.Zhang

Covariance analysis from 12 Parameter sets Y.X.Zhang, M.B.Tsang, Z.X.Li,

Coalescence Invariant with transverse angle cut and Ek>40MeV

Covariance analysis from 12 Parameter sets

Y.X.Zhang, M.B.Tsang, Z.X.Li,

L is sensitive to Rdiff & p/p; mass splitting is sensitive to nucleon spectra at both energies; ms is correlated to Rdiff & p/p ratios

Covariance analysis from 12 Parameter sets Y.X.Zhang et al

Table 1: List of twelve parameters used in the ImQMD calculations. $\rho_0 = 0.16 fm^{-3}$, $E_0 = -16 MeV$, and $g_{sur} = 24.5 MeV fm^2$, $g_{sur,iso} = -4.99 MeV fm^2$

Para.	$K_0 \; ({\rm MeV})$	$S_0({\rm MeV})$	$L \ (MeV)$	m_s^*/m	f_I
1	230	32	46	0.7	-0.238
2	280	32	46	0.7	-0.238
3	330	32	46	0.7	-0.238
4	230	30	46	0.7	-0.238
5	230	34	46	0.7	-0.238
6	230	32	60	0.7	-0.238
7	230	32	80	0.7	-0.238
8	230	32	100	0.7	-0.238
9	230	32	46	0.85	-0.238
10	230	32	46	1.00	-0.238
11	230	32	46	0.7	0.0
12(SLy4)	230	32	46	0.7	0.178

Parameter sets based on SLy4. Need to check other parameter sets.

Progress that was made

Consistent Constraints on Symmetry Energy from different experiments \rightarrow HIC is a viable probe

Updated Constraints with credible error bars from NuSYM13

Productions of high intensity high energy Radioactive Isotope Beams for the EoS studies over a wide range of density 3

July, 2014

Feb, 2015

Workshop on Science with STRIT

T June 5-6, 2015, RIKEN

The availability of intense rare isotope beams offer opportunities for improved constraints on the EoS:

At low densities relevant to crust core boundary of neutron stars. At supra-saturation densities relevant to the mass-radius relationship of neutron stars

At finite temperatures:

For dilute matter: EoS of supernova neutrino-sphere

For dense matter: nucleon effective mass splitting

At temperature relevant to the "boiling point of finite nuclei" Additional opportunities for probing low density EoS via studies of giant resonances

GMR – K_sym for low density symmetry energy

Gamov-Teller neutrino interaction rates in supernova Fission decay of rare isotopes

Extrapolation to fission processes occurring in r-process

Magnetic Field Considerations

Solenoid

- active shield magnets eliminate the Fe shielding
- Decrease the size and weight of solenoid → "portable" solenoid.
- price of solenoid comes down by refurbishing MRI magnets
- Advance in large area micro-Megas and GEM to replace wire planes
- Availability of GET electronics

Dipole

- dipole is expensive and heavy
- Not movable; Multi-users means difficulty with scheduling

HR-TPC: facilitating EoS and High resolution active target measurements with fast beams (Chajecki et al., WMU+MSU)

Adopts much of the design of the AT-TPC

- portable MRI magnet & MICROMEGAS gas amplification
- Beam enters through MICROMEGAS
- Cathode allows passage of charged particle ancillary detectors downstream.

Chajecki & Lynch

Summary and Outlook

- The availability of intense rare isotope (and also stable beams) provides opportunities to address the role of the EoS in astrophysical environments
 - Density dependence of the symmetry energy at sub-saturation densities. Here progress has already occurred.
 - EoS of dilute excited matter relevant to the neutrino-sphere.
 Promising beginning to address questions concerning corecollapse supernovae as the site of the r-process. Ties into general questions regarding dilute clustered nuclear matter.
 - Density and momentum dependence of the symmetry energy at supra-saturation densities. Here we expect a range of new results in the upcoming years.
- The ability to benchmark transport codes will allow us to have better confidence in interpreting our experimental results
- Using covariance analysis to examine correlations between parameters as well as to quantitatively understand the relationship between how experimental observables affect transport code parameters will hopefully lead to better theoretical uncertainties.