Constraining the nuclear matter equation of state around twice saturation density

by A. Le Fèvre¹, Y. Leifels¹, W. Reisdorf¹, J. Aichelin², Ch. Hartnack²

¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

²SUBATECH, UMR 6457, Ecole des Mines de Nantes - IN2P3/CNRS - Université de Nantes, France

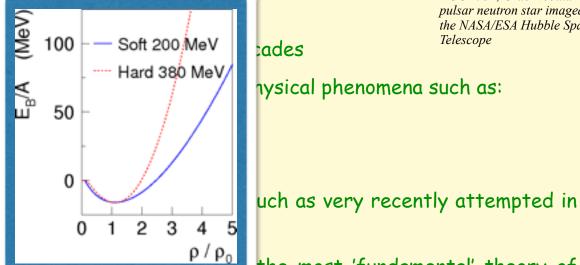
Constraining the nuclear matter equation of state around twice saturation density

by A. Le Fèvre¹, Y. Leifels¹, W. Reisdorf¹, J. Aichelin², Ch. Hartnack²

¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

²SUBATECH, UMR 6457, Ecole des Mines de Nantes - IN2P3/CNRS - Université de Nantes, France

- Introduction.
- Analysis and results.
- ▶ Simulations: the scenario.
- ▶ Summary and discussion.



The equation of state (EOS) of nuclear matter:

- of fundamental interest
- object of intense theoreti
- an important ingredient in
 - compact stars [1]
 - core collapse superno
- The calculation of the nuclear [3], is a very complex task.

Nuclear physics based on empi

nuclear forces requires a confrontation with empirical facts.

NGC 1952, Crab Nebula pulsar neutron star imaged by the NASA/ESA Hubble Space *Telescope*

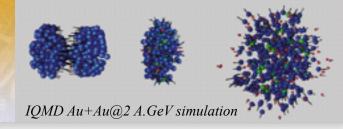
ades

nysical phenomena such as:

the most 'fundamental' theory of

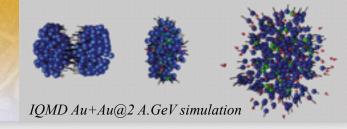
- 1st method, from astrophysicists: from 'neutron' star masses and radii. But missing:
 - precise model-independent radii,
 - composition of the matter in the centre of the stars.

- [1] J. M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62 (2012) 485.
- [2] A. Burrows, Rev. Mod. Phys. 85 (2013) 245.
- [3] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. Lett. 111 (2013) 032501


NGC 1952, Crab Nebula pulsar neutron star imaged by the NASA/ESA Hubble Space Telescope

- The equation of state (EOS) of nuclear matter:
 - of fundamental interest
 - object of intense theoretical efforts since several decades
 - an important ingredient in modeling fascinating astrophysical phenomena such as:
 - compact stars [1]
 - core collapse supernovae^[2]
- The calculation of the nuclear EOS from first principles, such as very recently attempted in [3], is a very complex task.
- Nuclear physics based on empirical observations => even the most 'fundamental' theory of nuclear forces requires a confrontation with empirical facts.
- ▶ 1st method, from astrophysicists: from 'neutron' star masses and radii. But missing:
 - precise model-independent radii,
 - composition of the matter in the centre of the stars.

- [1] J. M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62 (2012) 485.
- [2] A. Burrows, Rev. Mod. Phys. 85 (2013) 245.
- [3] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. Lett. 111 (2013) 032501

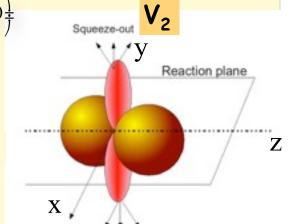


▶ Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.

 Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.

Flows at high density in heavy-ion collisions

$$\frac{dN}{d(\phi - \phi_R)}(y, p_t) = \frac{N_0}{2\pi} \left(1 + 2\sum_{n \ge 1} v_n \cos n(\phi - \phi_R) \right) \frac{1}{1}$$

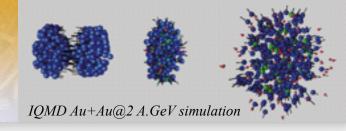

Y = rapidity

 p_{t} = transverse momentum

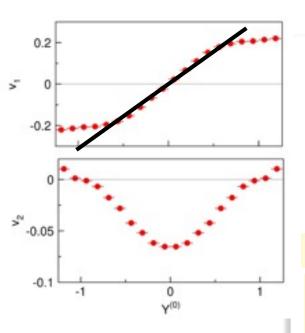
 Φ_R = reaction plane azimuthal angle

 V_1 = 'side/directed flow', $cos(\Phi - \Phi_R)$ mode

$$V_2(y, p_t) = \left\langle \frac{p_x^2 - p_y^2}{p_t^2} \right\rangle$$



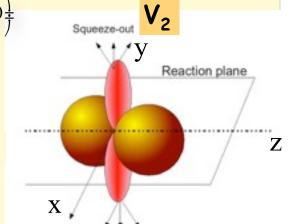
'Elliptic flow': $\cos(2(\Phi - \Phi_R))$ mode, competition between 'in-plane' $(V_2 > 0)$ and 'out-of-plane' ejection $(V_2 < 0)$.



▶ Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.

Flows at high density in heavy-ion collisions

$$\frac{dN}{d(\phi - \phi_R)}(y, p_t) = \frac{N_0}{2\pi} \left(1 + 2\sum_{n \ge 1} v_n \cos n(\phi - \phi_R) \right) \frac{1}{1}$$


Y = rapidity

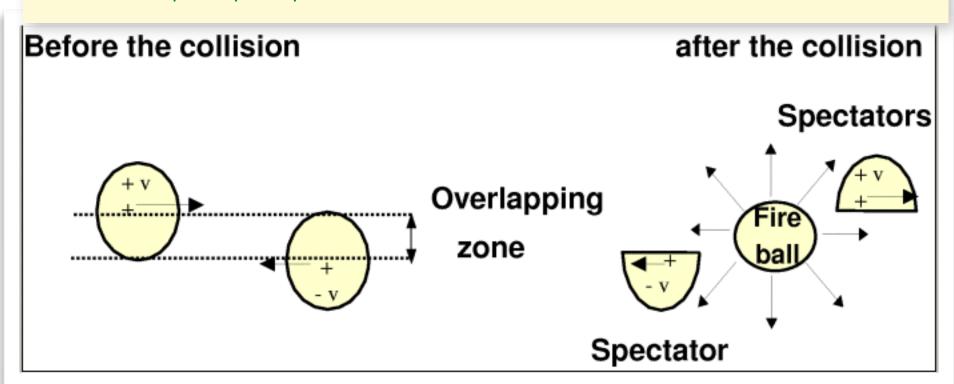
 p_{t} = transverse momentum

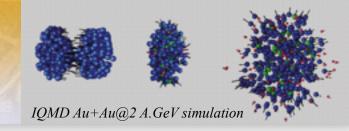
 Φ_R = reaction plane azimuthal angle

 V_1 = 'side/directed flow', $cos(\Phi - \Phi_R)$ mode

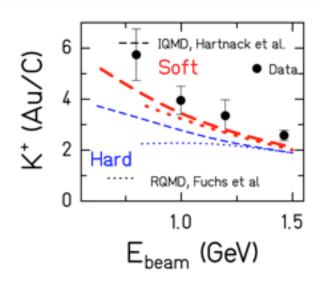
$$V_2(y, p_t) = \left\langle \frac{p_x^2 - p_y^2}{p_t^2} \right\rangle$$

'Elliptic flow': $\cos(2(\Phi - \Phi_R))$ mode, competition between 'in-plane' $(V_2 > 0)$ and 'out-of-plane' ejection $(V_2 < 0)$.





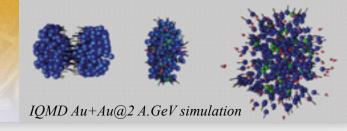
- ▶ Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.
 - flow method: limited to E_{beam} <10 A.GeV \leftarrow some kind of a clock is available (sound velocity versus participant-spectator interaction).



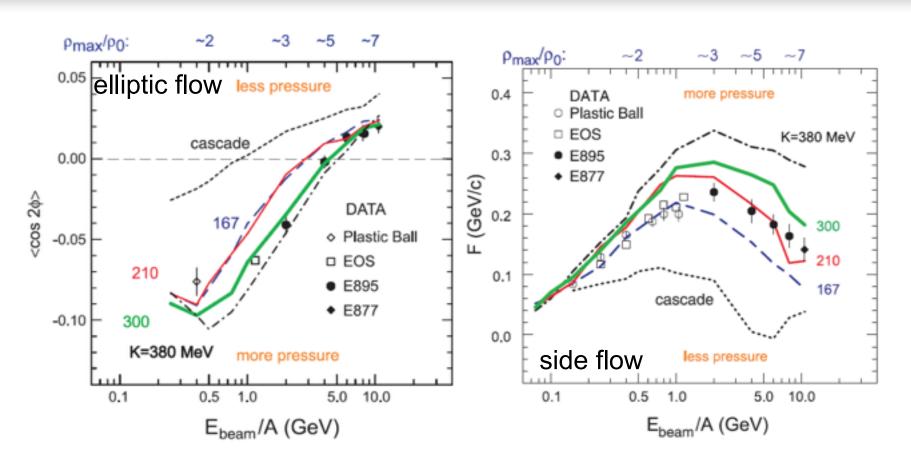
- ▶ Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.
 - flow method: limited to E_{beam} <10 A.GeV \leftarrow some kind of a clock is available (sound velocity versus participant-spectator interaction).
 - KaoS (1990's), C+C, Au+Au, K⁺ yields -> 'soft' EOS. But:
 - ▶ kaons rare at E_{beam}=0.8 A.GeV (max. sensitivity to the EOS).

all 'bulk' observables (multiplicities, clusterisation, stopping, flow) under control in

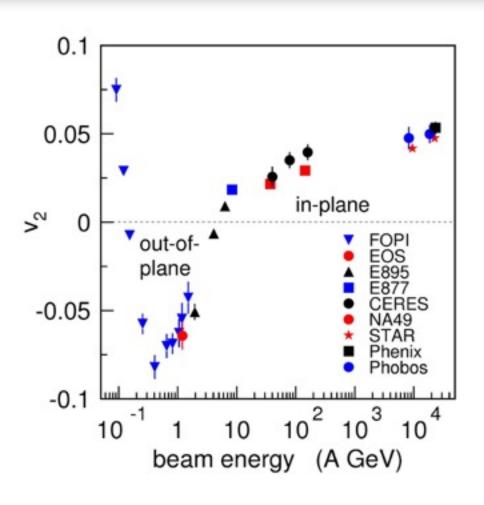
the transport model?



Data: C. Sturm et al., PRL 86 (2001) 39

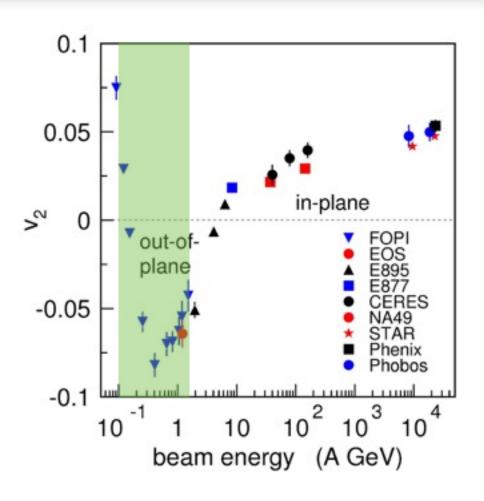


- ▶ Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.
 - flow method: limited to E_{beam} <10 A.GeV \leftarrow some kind of a clock is available (sound velocity versus participant-spectator interaction).
 - ▶ KaoS (1990's), C+C, Au+Au, K⁺ yields -> 'soft' EOS. But:
 - ▶ kaons rare at E_{beam}=0.8 A.GeV (max. sensitivity to the EOS).
 - all 'bulk' observables (multiplicities, clusterisation, stopping, flow) under control in the transport model?
 - ▶ EoS (1996), Au+Au @ 0.25 to 1.15 A.GeV, radial & sideward flow, squeeze-out versus QMD -> no strong sensitivity on the nuclear incompressibility K_0 .
 - ► FOPI (2005), Au+Au @ 0.09-1.5 A.GeV, Z=1 elliptic flow, versus 4 different transport codes -> 'no strong constraint on the EOS can be derived at this stage'.
 - ▶ BEVALAC & AGS accelerators, proton flows versus transport theories -> K_0 = 167-200 MeV (soft) from V_1 , K_0 = 300 MeV (semi-stiff) from V_2 -> contradictions.


Elliptic flow and the nuclear matter EOS

P. Danielewicz et al. Science 298, 1592 (2002)

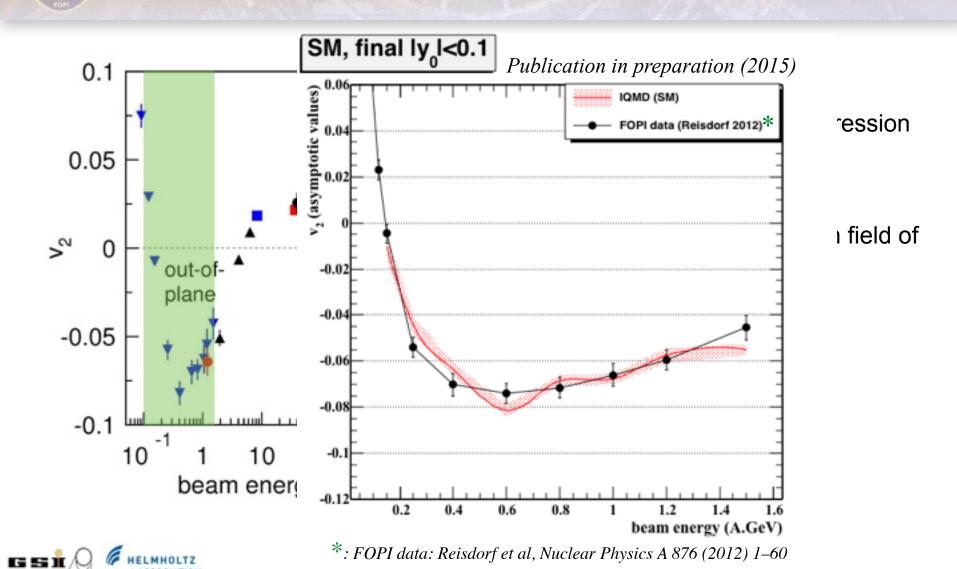
Beam energy dependence of the elliptic flow



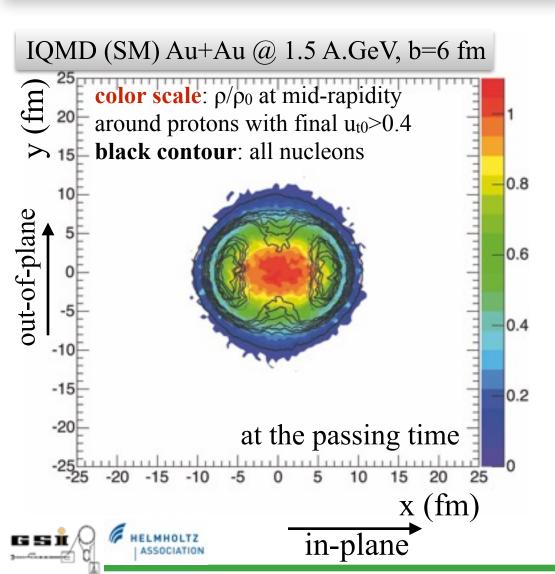
elliptic flow

- pressure gradient of compression zone
- shadowing of spectators
- > at low energies
 - attraction due to mean field of nucleons
- > at high energies
 - lacking shadowing of spectators

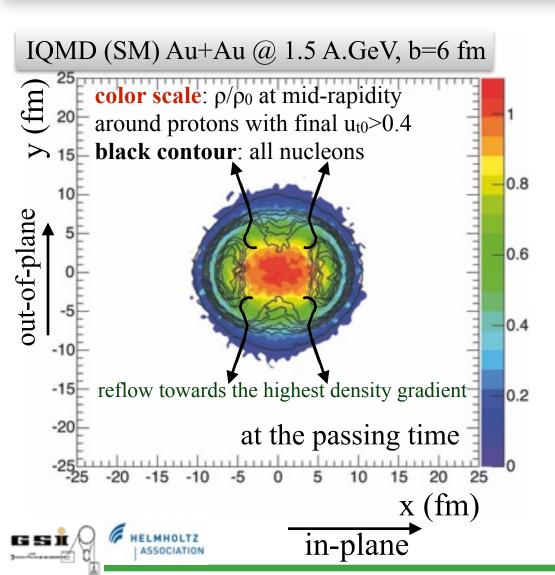
Beam energy dependence of the elliptic flow

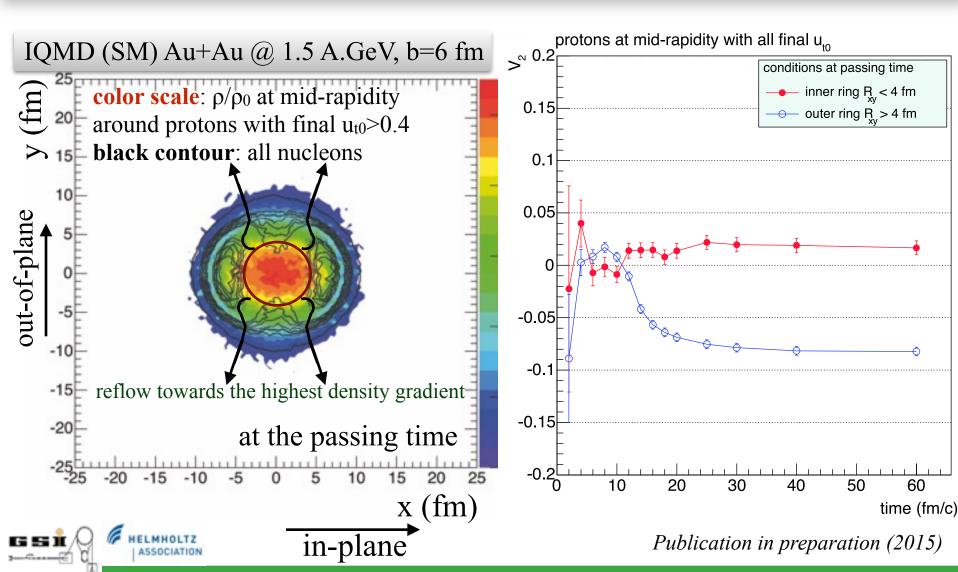

elliptic flow

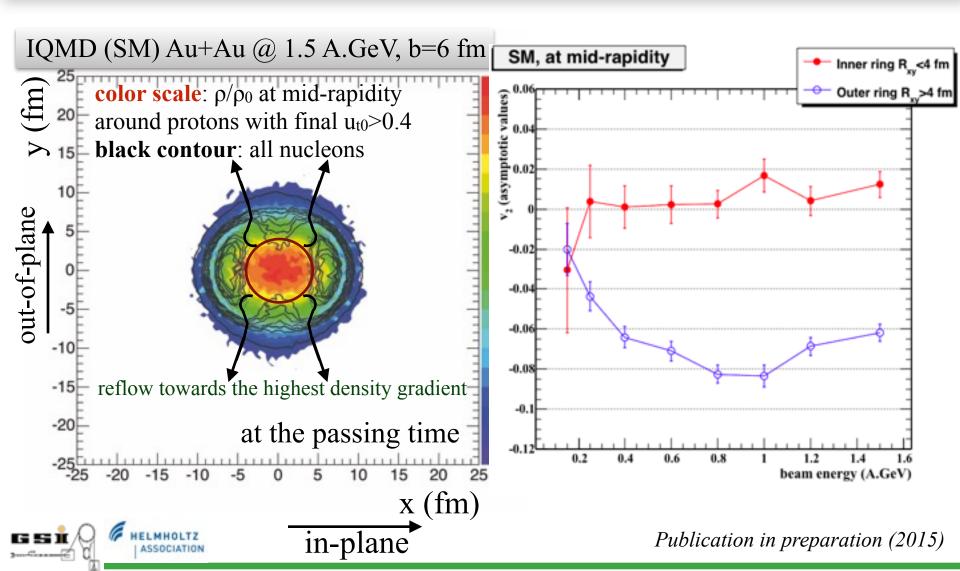
- pressure gradient of compression zone
- shadowing of spectators
- > at low energies
 - attraction due to mean field of nucleons
- at high energies
 - lacking shadowing of spectators



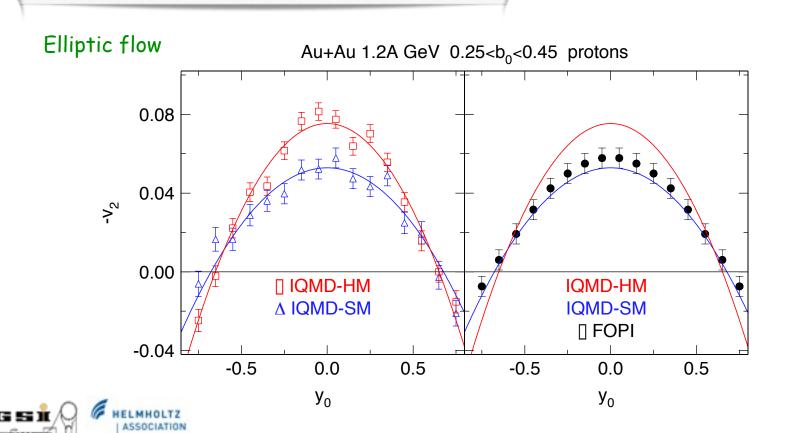
Beam energy dependence of the elliptic flow



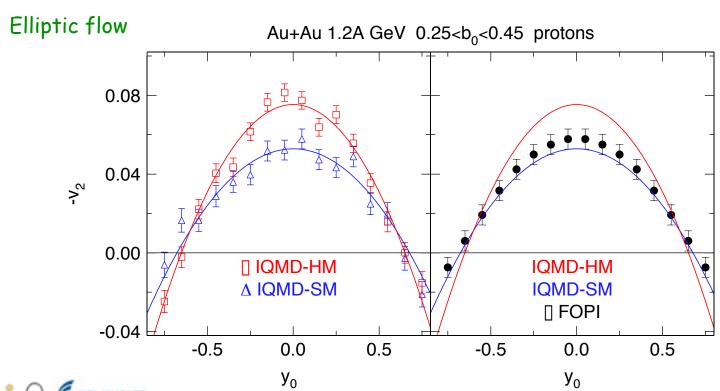

Publication in preparation (2015)


Publication in preparation (2015)

Arnaud Le Fèvre - NuSym - 29.06-2.07.2015 - Krakow, Poland


- Present work: improve the situation in the 1 A.GeV regime, from extensive flow data published recently by the FOPI Collaboration (Au+Au @ 0.4-1.5 A.GeV) [4]
 - → close look at the elliptic flow data with improvements:
 - ▶ 1) not only protons: d, t, ³He ⁴He having larger flow signals than single nucleons.
 - ▶ 2) not only mid-rapidity data: 80% of the target- projectile rapidity gap.

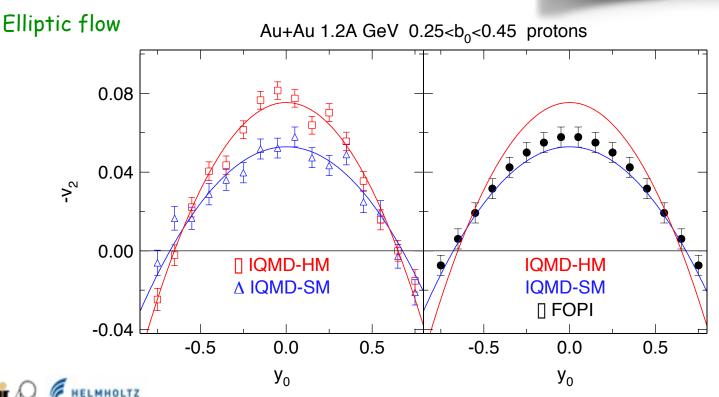
[4] W. Reisdorf, et al. (FOPI Collaboration), Nucl. Phys. A 876 (2012) 1.



After Andronic et al., Phys. Rev. C67 (2003) 034907, only the m.d.i. can account for the experimental directed flow => we restrict this study to SM and HM.

After Andronic et al., Phys. Rev. C67 (2003) 034907, only the m.d.i. can account for the experimental directed flow => we restrict this study to SM and HM.

K₀ = 380 MeV ('stiff') 200 MeV ('soft')

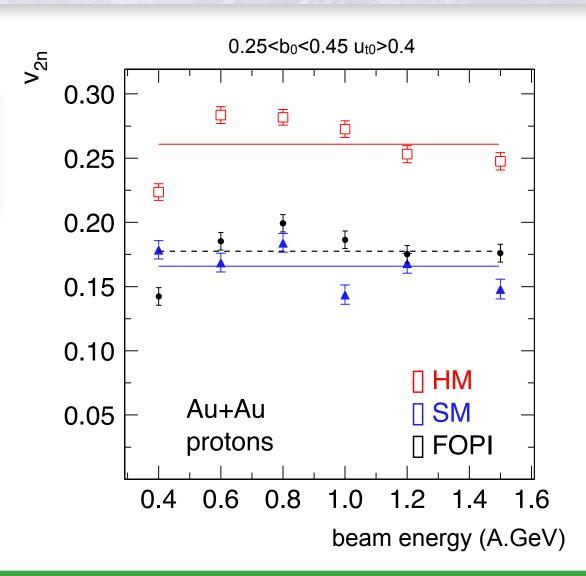


After Andronic et al., Phys. Rev. C67 (2003) 034907, only the m.d.i. can account for the experimental directed flow => we restrict this study to SM and HM.

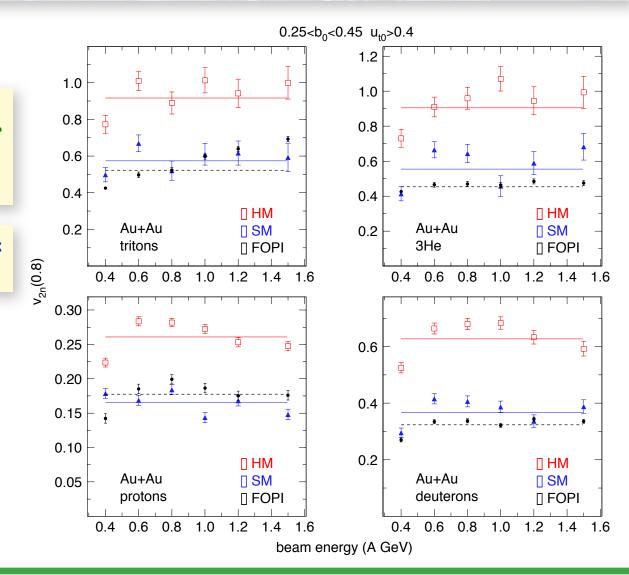
Complete shape of $v_2(y_0)$: a new observable:

$$v_{2n} = |v_{20}| + |v_{22}|,$$

from fit
 $v_{2}(y_{0}) = v_{20} + v_{22} \cdot y_{0}^{2}$

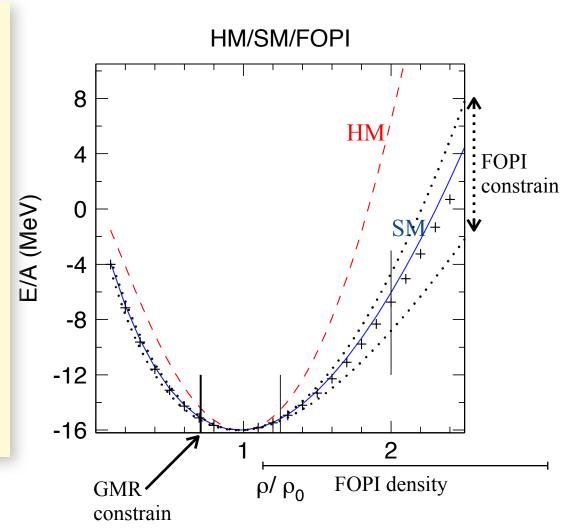

K₀ = 380 MeV ('stiff') 200 MeV ('soft')

→ $v_{2n}(E_{beam})$ varies by a factor ≈ 1.6 , \gg measured uncertainty (≈ 1.1)



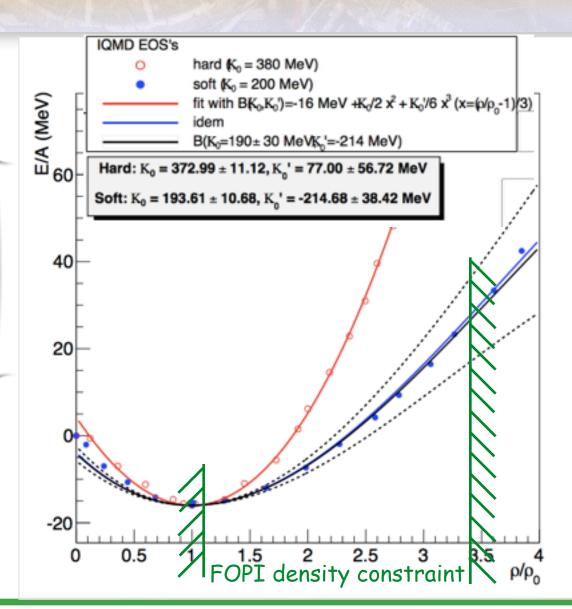
→ $v_{2n}(E_{beam})$ varies by a factor ≈ 1.6 , \gg measured uncertainty (≈ 1.1)

→ clearly favors a 'soft' EOS:
K₀ = 190 +/- 30 MeV



- Phenomenological EOS

 HM and SM include the saturation point at $\rho/\rho_0 = 1$, E/A = -16 MeV by construction.
- → fixes the absolute position of the curves:
- the heavy ion data are only sensitive to the shape, i.e. the pressure (derivative).
- → a stiff EOS, characterised by $K_0 = 380$ MeV is not in agreement with the flow data in the incident energy range 0.4 1.5 A.GeV.



NB: the qualified EOS has a non quadratic behavior: not only an incompressibility

 $K_0 = 190 \pm 30 \text{ MeV},$

but a skewness

$$K_0' = -214 \pm 38 \text{ MeV}$$

Purpose = characterise
which 'typical' densities
where probed in the FOPI
experiments
=> at which time V₂ develops,
and which conditions
influence it the most.

Purpose = characterise which 'typical' densities where probed in the FOPI experiments => at which time V₂ develops, and which conditions influence it the most.

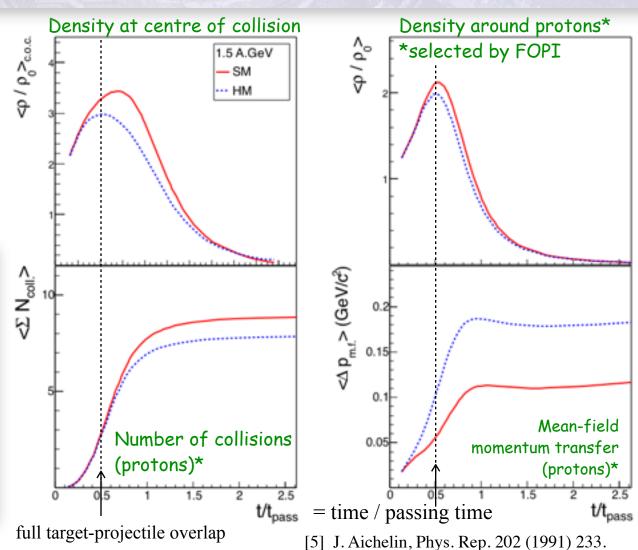
IQMD transport model^[5,6] various phenomenological EOS's:

» 'stiff' = HM
 (+ momentum dependent),
 K₀ = 380 MeV

» 'soft' = SM (+ momentum dependent), K_0 = 200 MeV.

Here: protons in Au+Au at 1.5 A.GeV, b=3 fm

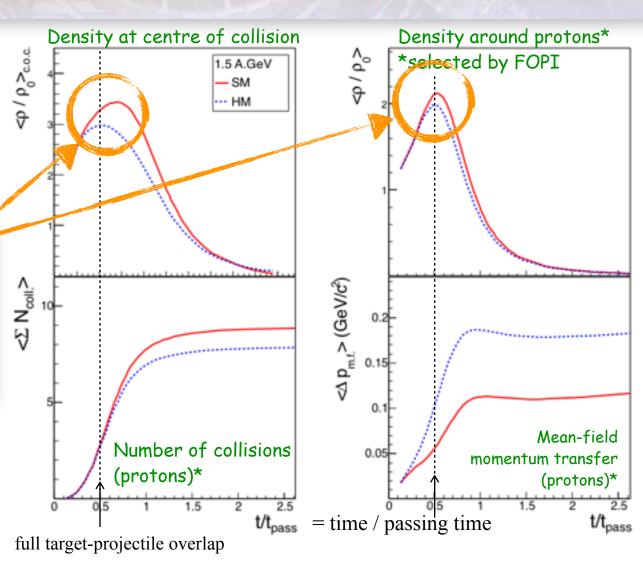
Purpose = characterise which 'typical' densities where probed in the FOPI experiments => at which time V₂ develops, and which conditions influence it the most.


IQMD transport model^[5,6] various phenomenological EOS's:

» 'stiff' = HM
 (+ momentum dependent),
 K₀ = 380 MeV

» 'soft' = SM (+ momentum dependent), K_0 = 200 MeV.

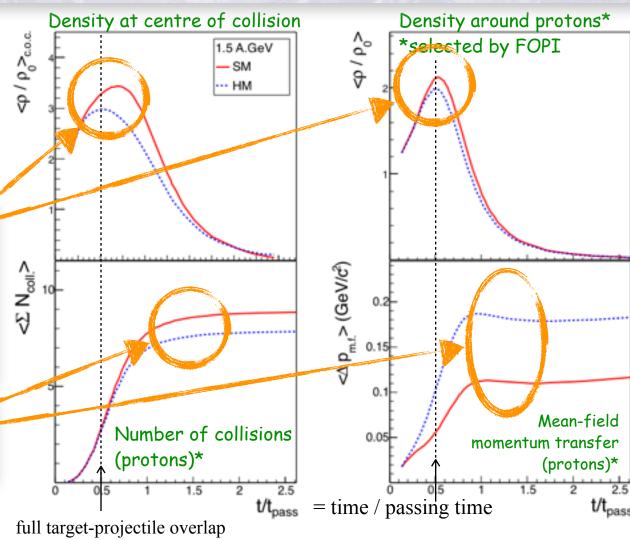
Here: protons in Au+Au at 1.5 A.GeV, b=3 fm


[6] C. Hartnack, et al., Eur. Phys. J. A 1 (1998) 151.

Purpose = characterise which 'typical' densities where probed in the FOPI experiments => at which time V₂ develops, and which conditions influence it the most.

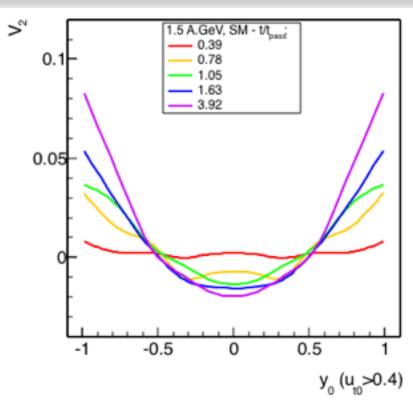
The highest density phase initiates the high pressure, hence the flow.

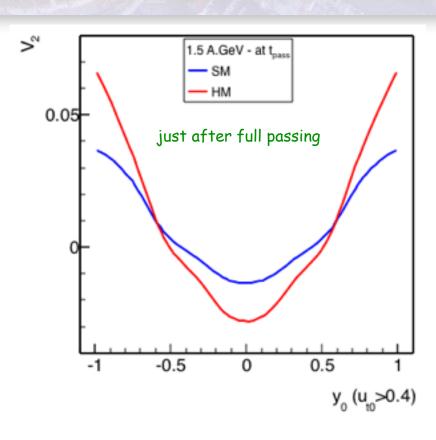
Tested: a high density cutoff in the EOS => no elliptic flow.

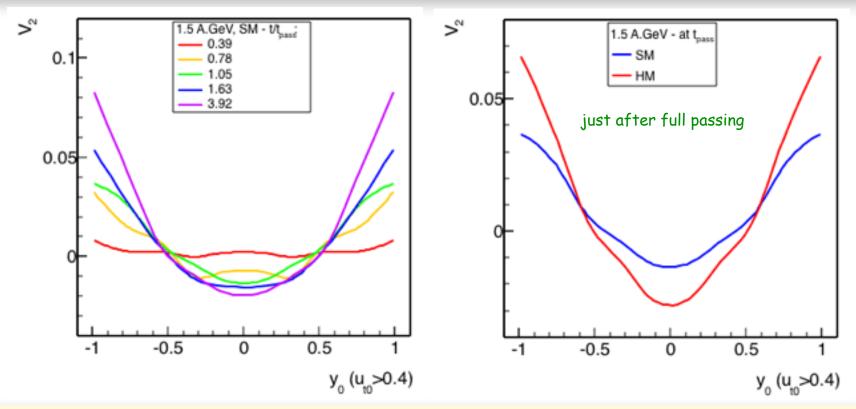


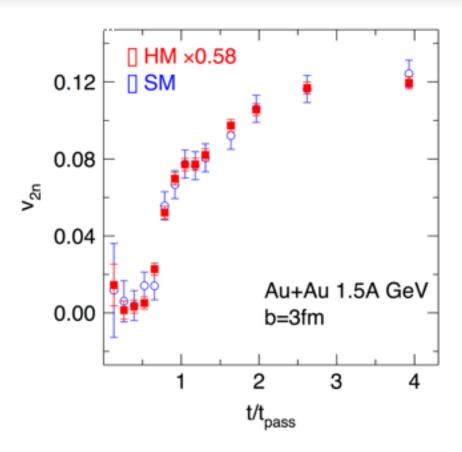
Purpose = characterise which 'typical' densities where probed in the FOPI experiments => at which time V₂ develops, and which conditions influence it the most.

The highest density phase initiates the high pressure, hence the flow.

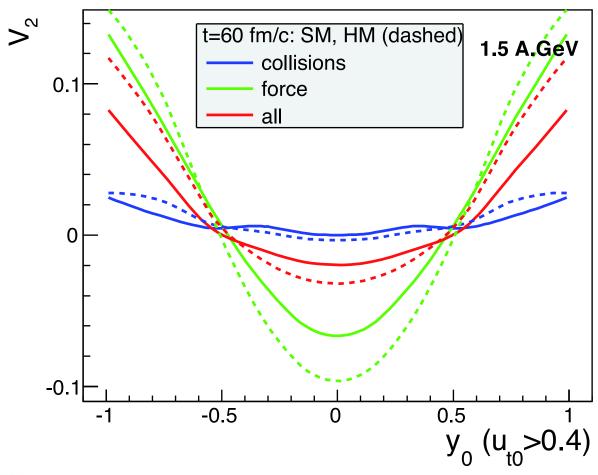

Tested: a high density cutoff in the EOS => no elliptic flow.


The (flow) dynamics develops up to later times, hence lower densities.

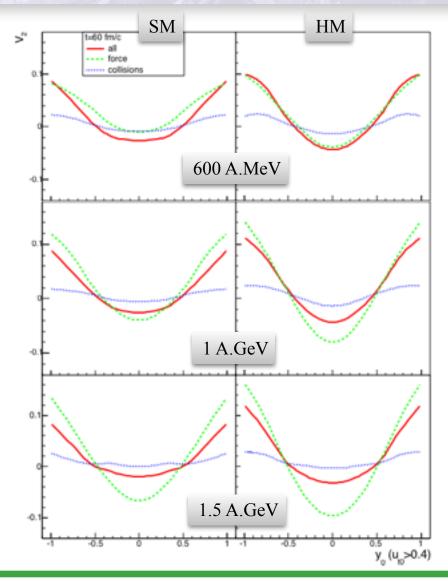




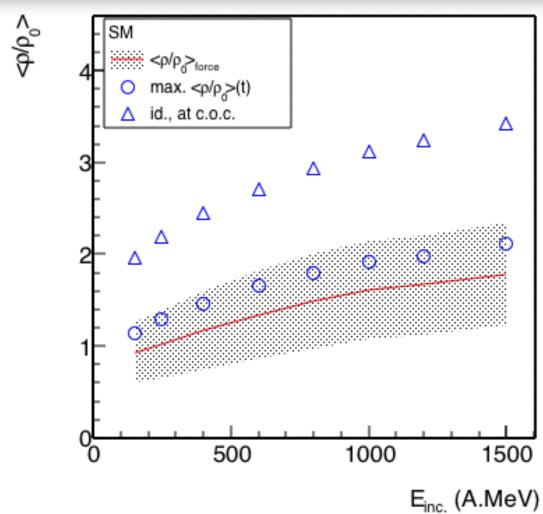
- The elliptic flow at mid-rapidity develops fast: already stabilised at the passing time.
- ▶ At t_{pass}, the elliptic flow, in its rapidity dependance, depends already strongly on the EOS.
- The elliptic flow around the spectators (|y0| close to 1) stabilises twice slower.



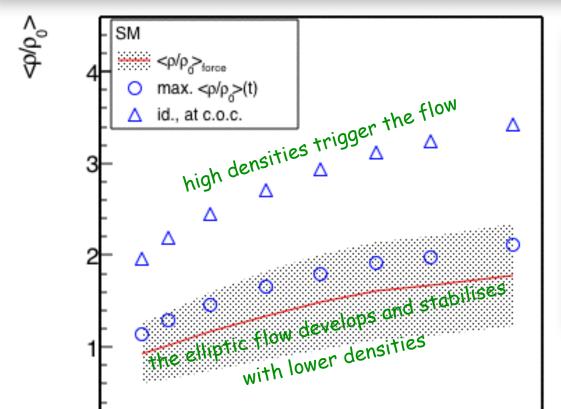
The shape of its rapidity dependance shows a universality with the EOS's (through scaling).



Simulations: the scenario


- The elliptic flow in strength and shape is mostly influenced by the force of the mean field (hence EOS).
- A 'mean' density characterising the development of the elliptic flow can be built from the mean value weighted by this force up to around the passing time.

Simulations: the scenario



Simulations: the scenario

500

1000

1500

E_{inc.} (A.MeV)

- In the QMD model, the EOS must be correct over a broad range of densities in order to predict the observed elliptic flow.
- The density range, relevant to the EOS evidenced by the FOPI Collaboration, spans in the range $\rho \simeq (1-3) \rho_0$.

 \blacktriangleright A single parameter v_{2n} , characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.

- \blacktriangleright A single parameter v_{2n} , characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- ▶ Relevant density range: estimated from the simulations to span $\rho = (1 3)\rho_0$.

- \blacktriangleright A single parameter v_{2n} , characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- ▶ Relevant density range: estimated from the simulations to span $\rho = (1 3)\rho_0$.
- The 'flow method': competitive and complementary with the 'kaon method' (which is as discriminating only for the narrow energy range $E_{beam} = 0.8$ A.GeV, close to threshold).

- \blacktriangleright A single parameter v_{2n} , characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- ▶ Relevant density range: estimated from the simulations to span $\rho = (1 3)\rho_0$.
- The 'flow method': competitive and complementary with the 'kaon method' (which is as discriminating only for the narrow energy range E_{beam} = 0.8 A.GeV, close to threshold).
- ▶ Both methods lead to the same conclusion (with same transport model IQMD).

- \blacktriangleright A single parameter v_{2n} , characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- ▶ Relevant density range: estimated from the simulations to span $\rho = (1 3)\rho_0$.
- The 'flow method': competitive and complementary with the 'kaon method' (which is as discriminating only for the narrow energy range $E_{beam} = 0.8$ A.GeV, close to threshold).
- ▶ Both methods lead to the same conclusion (with same transport model IQMD).
- Convincing conclusions on basic nuclear properties imply a successful simulation:
 - of the full set of experimental observables
 - with the same code
 - using the same physical and technical parameters.

- \blacktriangleright A single parameter v_{2n} , characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- ▶ Relevant density range: estimated from the simulations to span $\rho = (1 3)\rho_0$.
- The 'flow method': competitive and complementary with the 'kaon method' (which is as discriminating only for the narrow energy range $E_{beam} = 0.8$ A.GeV, close to threshold).
- ▶ Both methods lead to the same conclusion (with same transport model IQMD).
- Convincing conclusions on basic nuclear properties imply a successful simulation:
 - of the full set of experimental observables
 - with the same code
 - using the same physical and technical parameters.
- ▶ Has been reached for a number of observables, for some other data not yet the case.

- \blacktriangleright A single parameter v_{2n} , characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- ▶ Relevant density range: estimated from the simulations to span $\rho = (1 3)\rho_0$.
- The 'flow method': competitive and complementary with the 'kaon method' (which is as discriminating only for the narrow energy range $E_{beam} = 0.8$ A.GeV, close to threshold).
- ▶ Both methods lead to the same conclusion (with same transport model IQMD).
- Convincing conclusions on basic nuclear properties imply a successful simulation:
 - of the full set of experimental observables
 - with the same code
 - using the same physical and technical parameters.
- Has been reached for a number of observables, for some other data not yet the case.
- Radial flow of the light clusters was well reproduced, but insensitive to the EOS.

- \blacktriangleright A single parameter v_{2n} , characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- ▶ Relevant density range: estimated from the simulations to span $\rho = (1 3)\rho_0$.
- The 'flow method': competitive and complementary with the 'kaon method' (which is as discriminating only for the narrow energy range E_{beam} = 0.8 A.GeV, close to threshold).
- ▶ Both methods lead to the same conclusion (with same transport model IQMD).
- Convincing conclusions on basic nuclear properties imply a successful simulation:
 - of the full set of experimental observables
 - with the same code
 - using the same physical and technical parameters.
- ▶ Has been reached for a number of observables, for some other data not yet the case.
- Radial flow of the light clusters was well reproduced, but insensitive to the EOS.
- ▶ Pion yields: differ only by about 10% between HM and SM options, imply high experimental accuracy and better transport model predictions (elementary pion cross sections not precisely known).

> Sensitivity of the proton elliptic flow method: in the range $E_{beam} = 0.4$ A.GeV (below, energy/nucleon EOS is too flat -> low pressure) to 4 A.GeV (above, participant-spectator clock effect versus shadowing disappears).

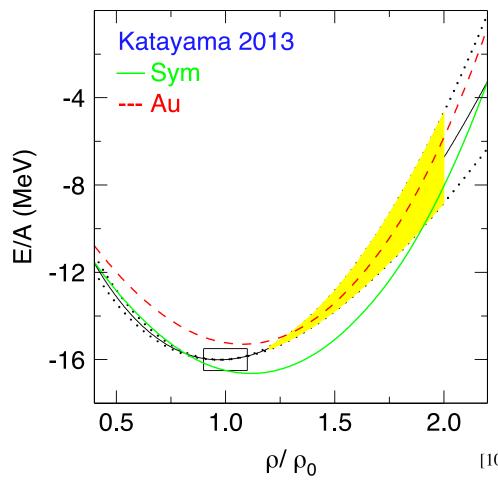
- Sensitivity of the proton elliptic flow method: in the range E_{beam} = 0.4 A.GeV (below, energy/nucleon EOS is too flat -> low pressure) to 4 A.GeV (above, participant-spectator clock effect versus shadowing disappears).
- Although IQMD successful to conclude at a 'soft' EOS, need for confirmation by independent experimental efforts, and similar confrontation to transport models.

- Sensitivity of the proton elliptic flow method: in the range E_{beam} = 0.4 A.GeV (below, energy/nucleon EOS is too flat -> low pressure) to 4 A.GeV (above, participant-spectator clock effect versus shadowing disappears).
- Although IQMD successful to conclude at a 'soft' EOS, need for confirmation by independent experimental efforts, and similar confrontation to transport models.
- Several issues need further efforts by the community: momentum dependences, clean Lorentz covariance at beam energies exceeding 1 A.GeV, clusterisation and entropy balances, in-medium nucleon-nucleon reactions...

- Sensitivity of the proton elliptic flow method: in the range E_{beam} = 0.4 A.GeV (below, energy/nucleon EOS is too flat -> low pressure) to 4 A.GeV (above, participant-spectator clock effect versus shadowing disappears).
- Although IQMD successful to conclude at a 'soft' EOS, need for confirmation by independent experimental efforts, and similar confrontation to transport models.
- ▶ Several issues need further efforts by the community: momentum dependences, clean Lorentz covariance at beam energies exceeding 1 A.GeV, clusterisation and entropy balances, in-medium nucleon-nucleon reactions...
- The spectator clock can presumably be used to try to extend improved EOS constraints to densities (3-4 ρ_0) in future accelerator systems such as FAIR.

- Sensitivity of the proton elliptic flow method: in the range E_{beam} = 0.4 A.GeV (below, energy/nucleon EOS is too flat -> low pressure) to 4 A.GeV (above, participant-spectator clock effect versus shadowing disappears).
- Although IQMD successful to conclude at a 'soft' EOS, need for confirmation by independent experimental efforts, and similar confrontation to transport models.
- ▶ Several issues need further efforts by the community: momentum dependences, clean Lorentz covariance at beam energies exceeding 1 A.GeV, clusterisation and entropy balances, in-medium nucleon-nucleon reactions...
- The spectator clock can presumably be used to try to extend improved EOS constraints to densities (3-4 ρ_0) in future accelerator systems such as FAIR.
- ▶ Beyond 4 A.GeV, other ideas are needed to extract EOS information from heavy ion data.

- Sensitivity of the proton elliptic flow method: in the range $E_{beam} = 0.4$ A.GeV (below, energy/nucleon EOS is too flat -> low pressure) to 4 A.GeV (above, participant-spectator clock effect versus shadowing disappears).
- Although IQMD successful to conclude at a 'soft' EOS, need for confirmation by independent experimental efforts, and similar confrontation to transport models.
- ▶ Several issues need further efforts by the community: momentum dependences, clean Lorentz covariance at beam energies exceeding 1 A.GeV, clusterisation and entropy balances, in-medium nucleon-nucleon reactions...
- The spectator clock can presumably be used to try to extend improved EOS constraints to densities (3-4 ρ_0) in future accelerator systems such as FAIR.
- ▶ Beyond 4 A.GeV, other ideas are needed to extract EOS information from heavy ion data.
- Main conclusion: we believe we can say that the feasibility of establishing reasonably tight empirical constraints on the nuclear EOS has been demonstrated.


- Sensitivity of the proton elliptic flow method: in the range E_{beam} = 0.4 A.GeV (below, energy/nucleon EOS is too flat -> low pressure) to 4 A.GeV (above, participant-spectator clock effect versus shadowing disappears).
- Although IQMD successful to conclude at a 'soft' EOS, need for confirmation by independent experimental efforts, and similar confrontation to transport models.
- Lorentz covariance at in-medium nucleon-nuc
- The spectator clock can presumably be used to try to extend improved EOS constraints to densities (3-4 ρ_0) in future accelerator systems such as FAIR.
- ▶ Beyond 4 A.GeV, other ideas are needed to extract EOS information from heavy ion data.
- Main conclusion: we believe we can say that the feasibility of establishing reasonably tight empirical constraints on the nuclear EOS has been demonstrated.

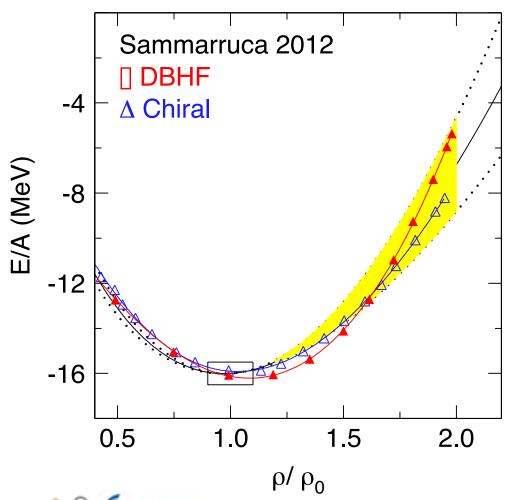
Comparison to microscopic calculations

(three representative microscopic calculations compared with our new constraints)

Dirac-Brueckner-Hatree-Fock (DBHF) calculation^[10] using the Bonn $A^{[11]}$ nucleon-nucleon potential

[10] R. Brockmann, R. Machleidt, Phys. Rev. C 42 (1990) 1965.

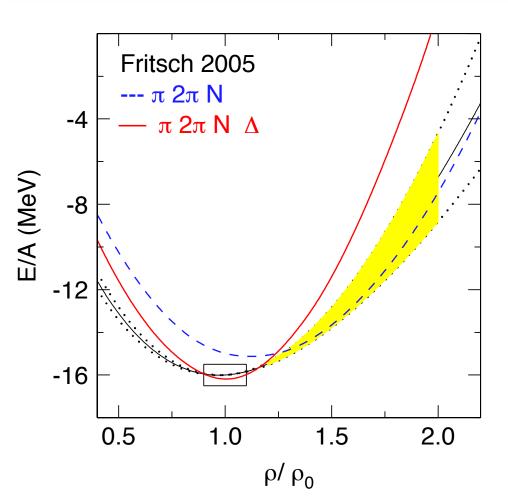
[11] T. Katayama, K. Saito, Phys. Rev. C 88 (2013) 035805.



Comparison to microscopic calculations

(three representative microscopic calculations compared with our new constraints)

- 2 symmetric nuclear matter EOS's from [12]:
 - 1) 'DBHF' = meson theoretic potential together with the DBHF method
 - 2) 'Chiral'= use of effective field theory (EFT) with density dependent interactions derived from leading order chiral three-nucleon forces.



[12] P. Danielewicz, G. Odyniec, Phys. Lett. B 157 (1985) 168.

Comparison to microscopic calculations

(three representative microscopic calculations compared with our new constraints)

Using the chiral approach^[13]: 2 rather different EOS's including or not virtual Δ excitations.

- » the virtual Δ -excitations help locate the EOS at the right horizontal place around ρ = 0.16 fm-3.
- » the \triangle leads to a rather marked stiffening of the EOS (KO = 304 MeV)
- » because 'cold' EOS?
- » finite temperature in the reaction => the Δ are real rather than virtual. The theoretical ' Δ stiffness' could then be a dispersion effect rapidly changing with temperature.

[13] S. Fritsch, N. Kaiser, W. Weise, Nucl. Phys. A 750 (2005) 259.