ν -matter interaction in CCSNe and NS mergers and the role of the nuclear EOS

Albino Perego

in collaboration with A. Arcones, D. Martin (TU-Darmstadt), M. Hempel, K. Ebinger,

M. Eichler, M. Liebendörfer, F.-K. Thielemann (Uni Basel), S. Rosswog,

O. Korobkin (Uni Stockholm), C. Fröhlich, J. Casanova (NCSU)

albino.perego@physik.tu-darmstadt.de

TU-Darmstadt, IKP-Theory

ν-matter interaction in CCSN and BNS mergers - NUSYM15, Krakow, Poland, 30 June 2015 - p. 1/18

Neutrino matter interaction

 ν 's are weakly interacting particles:

$$\sigma_{\nu} \sim \sigma_0 \left(\frac{E_{\nu}}{m_{\rm e}c^2}\right)^2 \quad \text{with} \quad \sigma_0 = \frac{4G_F^2 (m_e c^2)^2}{\pi (\hbar c)^4} \approx 1.76 \times 10^{-44} \,\text{cm}^2 \approx 2.6 \times 10^{-20} \sigma_t$$
$$\lambda_{\nu} \approx \frac{1}{n_{\rm target} \sigma_{\nu}} \sim 2.36 \times 10^{19} \text{cm} \left(\frac{\rho}{1 \,\text{g/cm}^3}\right)^{-1} \left(\frac{E_{\nu}}{1 \,\text{MeV}}\right)^{-2}$$

for a system of linear size R, ν absorption and scattering are dynamically relevant if

 $\lambda_{\nu} \lesssim R$

dashed lines:
$$\lambda_
u =$$
 1 ly , R_\odot , 100 km

u-matter interaction in CCSN and BNS mergers - NUSYM15, Krakow, Poland, 30 June 2015 – p. 2/18

Astrophysical scenarios

CCSN supernovae

- ν 's have a crucial cooling role and can potentially trigger explosion
- \bullet *v*'s set properties of ejected matter
- effective 1D model for CCSN explosions: PUSH

Perego, Hempel, Fröhlich et al, ApJ, 806, 275

Binary NS mergers

- ν 's trigger matter ejection and set ejecta properties
- 3D model of ν -driven wind in binary NS merger

Perego et al., MNRAS, V. 443, p. 3134-3156

Martin, AP et al., arXiv:1506.05048

What is the role of finite temperature, nuclear EOS on the dynamics and on the ν role/observables?

Nuclear EOS influence

Available nuclear EOS at finite T:

- **L**S (LDP: K = 180, 220 MeV + Skyrme-like interact. + excluded V) Lattimer&Swesty 91
- STOS (RMF: TM1 + excluded V)
 Shen 98
- HS (RMF: DD2,TMA, ... + excluded V + internal part. func.) Hempel, Schaffner-Bielich 10
- SHT/SHO (RMF: NL3,FSU + virial expansion)
 G. Shen 12

Different EOS result in:

- different matter properties: β-equilibrium, chemical potentials, compositions ...
- different neutrino interaction: emissivity & opacities
 - inclusion of nucleon self-energy

Roberts+12, Martinez-Pinedo+12, Hempel+15

• different PNS/NS properties: compactness (M/R) and structure

CCSN: basic picture

end of the life of massive stars (ZAMS $M \gtrsim 8 M_{\odot}$)

CCSN: basic picture

end of the life of massive stars (ZAMS $M \gtrsim 8 M_{\odot}$)

CCSN scenario (R.J. Hall, Wikipedia)

- still uncertainties in the explosion mechanism
- plausible mechanism: delayed v-driven explosion, enhanced by convection and multi-D instabilities Wilson 85

- robust picture
 e.g. Janka 12, Burrows 13
- $D \Delta E_{\rm grav} \sim G \frac{3M_{\rm NS}^2}{5R_{\rm NS}} \sim {\rm a\,few\,} 10^{53} {\rm erg}$
- ν diffusion time scale: $\sim 10 \, {
 m s}$
- intense ν -emission ($L \sim 10^{53} \mathrm{erg/s}$)

Collapse duration and profiles at bounce e.g. Couch 12, Fischer+14

Profiles at bounce for 11.2 M_{\odot} , Fischer+14

v-matter interaction in CCSN and BNS mergers - NUSYM15, Krakow, Poland, 30 June 2015 - p. 6/18

- collapse duration and profiles at bounce e.g. Couch 12, Fischer+14
- development of multi-D instabilities and structure of the CCSN mantle

e.g. Marek&Janka 09, Couch 12, Suwa+13

softer EOS lead to a more compact PNS, stronger instabilities, earlier explosions

- Collapse duration and profiles at bounce e.g. Couch 12, Fischer+14
- development of multi-D instabilities and structure of the CCSN mantle

e.g. Marek&Janka 09, Couch 12, Suwa+13

neutrino luminosities and spectra

e.g. O'Connor&Ott 13, Fischer+14

O'Connor&Ott 13

- Collapse duration and profiles at bounce e.g. Couch 12, Fischer+14
- development of multi-D instabilities and structure of the CCSN mantle

e.g. Marek&Janka 09, Couch 12, Suwa+13

neutrino luminosities and spectra

e.g. O'Connor&Ott 13, Fischer+14

PNS collapse to a BH

e.g. Fischer+ 09, O'Connor&Ott 11

softer EOS lead to higher densities and quicker BH collapse

- collapse duration and profiles at bounce e.g. Couch 12, Fischer+14
- development of multi-D instabilities and structure of the CCSN mantle

e.g. Marek&Janka 09, Couch 12, Suwa+13

neutrino luminosities and spectra

e.g. O'Connor&Ott 13, Fischer+14

PNS collapse to a BH

e.g. Fischer+ 09, O'Connor&Ott 11

electron fraction in ejecta and ν -driven wind

e.g. Arcones+07, Fischer+ 10, Hüdepohl+10, Roberts+12, Martinez-Pinedo+12

p-rich or (weakly) n-rich?

CCSN: modeling

- spherically symmetric (1D) models with detailed input physics fail (in general) to explode Liebendörfer+04, Thompson+03, Rampp & Janka 02, Sumvioshi+05
- multi-D hydro instabilities can play a crucial role, enhancing ν heating

Nordhaus+10, Hanke+12, Couch+13, Dolence+13, ...

however, no consensus (so far) on multi-D results

Müller+12,13; Bruenn+13,14; Melson+15, Dolence+15...

multi-D + detailed input physics increase computational costs

mass trajecory and shock position from

1D simulation, Liebendörfer+01

entropy contours from 3D simulation,

www.rzg.mpg.de

PUSH basic idea

Our goal:

To provide 1D exploding models of CCSN with ν 's + employing $\nu_e, \bar{\nu}_e$ transport (IDSA) + nuclear EoS (HS(DD2))

Basic idea:

To tap a fraction of the $\nu_{\mu,\tau}$ luminosity inside the gain region to enhance neutrino absorption

What's it good for?

- broad parameter studies (e.g., progenitor masses and metallicity)
- explosive nucleosynthesis and explosion properties

Strengths

- **P** preservation of ν_e and $\bar{\nu}_e$ properties
- inclusion of nucleon self-energy
- evolution of Y_e and of the proto-NS

Caveats

effective 1D model

usage of $\nu_{\mu,\tau}$ (however, averages $\nu_{\mu,\tau}$ properties correlate with ν_e and $\bar{\nu}_e$'s one)

First results with PUSH

Effective model: calibration of free parameters, using SN1987A data

Perego+ 15

- **9** 18-21 M_{\odot} exploration
- todo: progenitor exploration + explosive nucleosynth.
- todo: EOS influence and im-medium effects

let's assume that two CCSNe explode in a stellar binary system, leaving behind 2 NSs in a binary system

Final stage of a binary NS (BNS) system evolution:

double BNS systems do exist

PSR	Р	P_b	a sin i	е	$\dot{\omega}$	M	$ au_{ m GW}$
	ms	days	lt-s		deg yr $^{-1}$	${\sf M}_{\odot}$	Gyr
Double neutron star binaries							
B1913+16	59.0	0.323	2.34	0.617	4.227	2.83	0.31
B1534+12	37.9	0.421	3.73	0.274	1.756	2.75	2.69
B2127+11C	30.5	0.335	2.52	0.681	4.457	2.71	0.22
J1518+4904	40.9	8.634	20.04	0.249	0.011	2.62	9600
J1811-1736	104.2	18.779	34.78	0.828	0.009	2.6	1700
J0737-3039A	22.7	0.102	1.42	0.088	16.88	2.58	0.087
J0737-3039B	2773.5	0.102	1.51	0.088		2.58	0.087
J1829+2456	41.0	1.17	7.24	0.14	0.28	2.53	60
J1756-2251	28.5	0.319	2.75	0.18	2.59	2.57	1.7
Neutron star-white dwarf binaries							
B2303+46	1066.4	12.34	32.69	0.66	0.010	2.53	4500
J1141-6545	393.9	0.20	1.86	0.17	5.33	2.30	0.59

PSR1913+16 periastron shift

millisecond pulsars in relativistic binaries

Credit: Weisberg+10, Lorimer 05

Final stage of a binary NS (BNS) system evolution:

- double BNS systems do exist
- inspiral phase, driven by GW emission

$$t_{\rm insp} \approx 4.56 \,\mathrm{Gyr} \,\left(\frac{T_{\rm orb}}{10\mathrm{h}}\right)^{8/3} \left(\frac{M}{M_{\odot}}\right)^{-2/3} \left(\frac{\mu}{M_{\odot}}\right)^{-1} \left(1-e^2\right)^{7/2}.$$

(see, e.g., Lorimer 05)

- M total mass
- μ reduced mass
- e eccentricity

Final stage of a binary NS (BNS) system evolution:

- double BNS systems do exist
- inspiral phase, driven by GW emission
- coalescence phase

Temperature from a SPH simulations. Credit: S. Rosswog.

Final stage of a binary NS (BNS) system evolution:

- double BNS systems do exist
- inspiral phase, driven by GW emission
- coalescence phase
- NS merger aftermath

- Hyper Massive NS (\rightarrow BH) $\sim 2.6 M_{\odot}, \rho \gtrsim 10^{12} \mathrm{g \, cm^{-3}}$
- thick accreting disk $\sim 0.15 M_{\odot}, Y_e \lesssim 0.05$
- intense ν emission $L_{\nu, \text{tot}} \sim 10^{53} \text{erg s}^{-1}$
- \leftarrow figure: matter density

Nuclear & Astro relevance

dynamical encounter of neutron-rich, stellar compact object

- intense emitter of gravitational waves and neutrinos e.g. Read+13
- ejecta and heavy elements nucleosynthesis Lattimer&Schramm74
- significant dependence on nuclear EoS properties e.g. Bauswein+14

www.ligo.caltech.edu

- possible short gamma-ray burst
 progenitors
 e.g. Paczynski86
- electromagnetic counterpart from radioactive decay
 Li&Paczynski98
- ejecta properties depends on ν-matter
 interaction
 e.g. Wanajo+14

Aloy+05

Nuclear & Astro relevance

dynamical encounter of neutron-rich, stellar compact object

Rosswog 12

- intense emitter of gravitational waves and neutrinos
 e.g. Read+13
- ejecta and heavy elements nucleosynthesis Lattimer&Schramm74
- significant dependence on nuclear EoS properties e.g. Bauswein+14

- possible short gamma-ray burst progenitors
 e.g. Paczynski86
- electromagnetic counterpart from radioactive decay
 Li&Paczynski98
- ejecta properties depends on ν-matter
 interaction
 e.g. Wanajo+14

Tanvir+13, Berger+13 -

Nuclear & Astro relevance

dynamical encounter of neutron-rich, stellar compact object

Rosswog 12

- intense emitter of gravitational waves and neutrinos
 e.g. Read+13
- ejecta and heavy elements nucleosynthesis Lattimer&Schramm74
- significant dependence on nuclear EoS
 properties
 e.g. Bauswein+14

- possible short gamma-ray burst progenitors e.g. Paczynski86
- electromagnetic counterpart from radioactive decay
 Li&Paczynski98
- ejecta properties depends on ν-matter
 interaction
 e.g. Wanajo+14

Tanvir+13, Berger+13 -

Nuclear EOS influence the NS compactness: (softer EOS \rightarrow smaller R_{NS})

. 7

e.g. Lattimer+12,Lattimer&Steiner 14

Nuclear EOS influence the NS compactness: (softer EOS \rightarrow smaller R_{NS})

GW signal

e.g. Read+13, Hotokezaka+13, Bauswein+13, Takami+15

more compact NS' produce higher frequencies

Nuclear EOS influence the NS compactness: (softer EOS \rightarrow smaller R_{NS})

GW signal

e.g. Read+13, Hotokezaka+13, Bauswein+13, Takami+15

amount of ejecta and mass of the disc

e.g. Ruffer+98, Rosswog+ 03, Rosswog+12, Hotokezaka+13, Bauswein+13

more compact NS' eject more mass, less compact have tidal contribution

Bauswein+13

Nuclear EOS influence the NS compactness: (softer EOS \rightarrow smaller R_{NS})

GW signal

e.g. Read+13, Hotokezaka+13, Bauswein+13, Takami+15

amount of ejecta and mass of the disc

e.g. Ruffer+98, Rosswog+ 03, Rosswog+12, Hotokezaka+13, Bauswein+13

velocity of the ejecta

e.g. Rosswog+12, Hotokezaka+13, Bauswein+13

more compact NS' produce larger velocities

Nuclear EOS influence the NS compactness: (softer EOS \rightarrow smaller R_{NS})

GW signal

e.g. Read+13, Hotokezaka+13, Bauswein+13, Takami+15

amount of ejecta and mass of the disc

e.g. Ruffer+98, Rosswog+ 03, Rosswog+12, Hotokezaka+13, Bauswein+13

- velocity of the ejecta
- intensity of ν emission

e.g. Rosswog+12, Hotokezaka+13, Bauswein+13

e.g. Sekiguchi+15, Rosswog+14

more compact NS' have larger temperatures and larger ν luminosities

Nuclear EOS influence the NS compactness: (softer EOS \rightarrow smaller R_{NS})

GW signal

e.g. Read+13, Hotokezaka+13, Bauswein+13, Takami+15

amount of ejecta and mass of the disc

e.g. Ruffer+98, Rosswog+ 03, Rosswog+12, Hotokezaka+13, Bauswein+13

- velocity of the ejecta
- intensity of ν emission
- destiny of the remnant:

e.g. Rosswog+12, Hotokezaka+13, Bauswein+13

e.g. Sekiguchi+15, Rosswog+14

e.g. Hotokezaka+13, Bauswein+14

SMNS, HMNS \rightarrow BH (time scale?), BH

Neutrino-driven wind

Physical origin of the ν -driven wind:

- $HMNS (\rightarrow BH)$
 - $\sim 2.60 M_{\odot}$
- thick accreting disk $\sim 0.17 M_{\odot}, Y_e \lesssim 0.05$

- intense neutrino (ν) emission $L_{\nu, {\rm tot}} \sim 10^{53} {\rm erg \, s^{-1}}$
- ν -disk interaction: wind formation

Disc and wind dynamics

t = 0 ms

right: projected velocity

right: entropy

- 60

- 50

40

30

20

10

n

Entropy [k_B/baryon]

Disc and wind dynamics

Disc and wind dynamics

Nucleosynthesis from the wind

Postprocessing of ejected tracers (~ $17k \rightarrow 9 \times 10^{-3} M_{\odot}$)

- Winnet nuclear network
- weak r-process: 80<A<130</p>
- complementary to robust r-process nucleosynthesis from dynamic ejecta
- possible differences between high and low latitude ejecta

our wind ejecta + dynamical ejecta

 $(m_{\rm dyn} pprox 10^{-2} M_{\odot})$ from Korobkin+12

Martin, AP et al., arXiv:1506.05048

Electromagnetic transient

 γ emission powered by radioactive material in the ejecta

bolometric luminosity (dynamic + wind), computed by O. Korobkin

Martin, AP et al, arXiv:1506.05048

model application for photon propagation and emission

e.g. Kulkarni 05,Grossman+13

- potentially different from emission coming from dynamical/viscous ejecta
 - earlier and bluer
 - less contaminated by lanthanides and actinides

cf Metzger&Fernandez14

• impact of different EOS on the wind and its Y_e ?

Conclusions

- PUSH: 1D effective model to explode stars using ν's
- tool to compute nucleosynthesis yields & test EOS impact
- ν -driven wind from BNS merger
 - effect of EOS still unknown

- v's are crucial ingredients of CCSN and BNS merger modeling
- nuclear EOS impacts on dynamics and v properties
- still large uncertanties due to nuclear input physics
- large impact on ejecta properties

